President
Prof. S.S. Jolly, M.D.
Medical College
Patiala, India

Vice President
Dr. sc. med. J. Franke
Orthopedic Clinic
Med. Academy Erfurt, GDR

2nd Vice President
Prof. Jacques Elsair
Institut des Sciences Medicales
Alger, Algeria

Acting Secretary-Treasurer
L.A. Patzalek, R.N.
Warren, Michigan

ADVISORY BOARD
Prof. G. Frada, M.D.
Institute of Occupational Medicine
University of Palermo, Italy

Prof. G. Halbwachs, Ph.D.
Institute of Botany
Vienna, Austria

A.H. Siddiqui, M.D.
Coon Rapids, Minnesota

J.V. Marhold, M.D., Ph.D.
Research Institute for Organic Synthesis
Pardubice, CSSR

Prof. J.B. Patrick, Ph.D.
Mary Baldwin College
Staunton, Virginia

EDITORIAL BOARD
D.J. Ballantyne, Ph.D.
University Victoria
Victoria, B.C.

MUDr. G. Balazova CSc.
Research Institute for Hygiene
Bratislava, Czechoslovakia

Dr. Ernest Bovay, Director
Federal Agric. Research Station
Lisbefeld Barn, Switzerland

K.A.V.R. Krishnamachari, M.D.
National Institute of Nutrition
Hyderabad, India

Prof. G. Neil Jenkins
Univ. of Newcastle Upon Tyne,
England

Jerzy Krzchniak, Ph.D.
Akademia Medyczna
Gdansk, Poland

A.K. Sushesta
All India Inst. of Medical Sciences
New Delhi, India

Prof. Dr. G. Obe
Freie Universitat Berlin
Berlin, DDR

Prof. G.W. Miller, Ph.D.
Utah State University
Logan, Utah

Prof. F. Pinet, M.D.
Rhone, France

Dr. sc. med. J. Franke
Orthopedic Clinic
Med. Academy Erfurt, GDR

Prof. A.W. Burgstahler, Ph.D.
University of Kansas
Lawrence, Kansas

Prof. Rene Truhaut, Ph.D.
Faculte De Pharmacie
Universite de Paris, France

Dr. Michael N. Egyed
Kimron Veterinary Institute
Beit Dagan, Israel

H. Hannhiljarvi, D.D.S.
Korpilahti, Finland

Dr. John A. Cooke
Sunderland Polytechnic School of
Pharmacy & Biology
Sunderland, England

Prof. Jacques Elsair
Institut des Sciences Medicales
Alger, Algeria

Prof. Frederick W. Oehme, D.V.M., Ph.D.
Kansas State University
Manhattan, Kansas

Prof. S.P.S'. Teotla, M.D.
Medical College
Univ. of Meerut, India

H.M. Sinclair, M.D.
Magdalen College
Oxford, England
TABLE OF CONTENTS

IN MEMORIUM .. 165-168

EDITORIAL
 Overfluoridation ... 169-172

ORIGINAL ARTICLES
 Fate of Fluoride Following Its Administration into a Biological System — An In Vivo Study — by A.K. Susheela, Y.D. Sharma, Mohan Jha, et al., New Delhi, India 173-177

 Certain Facets of F^- Action on Collagen Protein in Osseous and Nonosseous Tissues — by A.K. Susheela and Y.D. Sharma, New Delhi, India 177-190

 F^- Ingestion and Its Influence on Glycosaminoglycans in Cancellous and Cortical Bone — A Structural and Biochemical Study — by A.K. Susheela, and Mohan Jha, New Delhi, India 191-198

 On the Significance of Sialic Acid and Glycosaminoglycans in the Serum of Fluorosed Human Subjects — by A.K. Susheela and Mohan Jha, New Delhi, India 199-202

 Adenyl Cyclase Activity and Cyclic Amp Levels Following F^- Ingestion in Rabbits and Human Subjects — by M. Singh, and A.K. Susheela, New Delhi, India 202-208

Comparative Metabolic Studies in Fluoride-Treated and Streptozotocin-Diabetic Rats — by I. Boris, P. Keszler, Zs. Toth and T. Zelles, Budapest, Hungary 214-221

ABSTRACTS
The Uracil-Fluoride Interaction: Ab Initio Calculations Including Solvation — by J. Emsley, D.J. Jones and R.E. Overill, King's College, Strand, London 222

A Review of Clinical Research on the Use of Prenatal Fluoride Administration for Prevention of Dental Caries — by W.S. Driscoll, Salt Lake City, Utah 222

FLUORIDE BRIEFS 198, 221, 223

The 13th Conference of the International Society for Fluoride Research is scheduled to convene in New Delhi, India, November 14-17, 1983. The program committee is soliciting abstracts (up to 300 words) of papers to be presented at the conference dealing with the action of fluoride on (1) Ecology and Environment (2) Geology and Geochemistry and (3) Health. Abstracts should be submitted prior to March 15, 1983. Authors will be notified of acceptance of papers by June 1, 1983.

Kindly send abstracts to Dr. A.K. Susheela, Organizing Secretary, 13th I.S.F.R. Conference, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India.

Further information concerning the conference will appear in FLUORIDE January 1983.

FLUORIDE is published quarterly by THE INTERNATIONAL SOCIETY FOR FLUORIDE RESEARCH, INC.,

SUBSCRIPTION RATES Beginning January 1983 – Price per annum in advance including postage $30.00. Single copies $8.50.

MANUSCRIPTS for publication should be submitted in English, double-spaced with generous margins. References should be arranged according to the order in which they are cited in the text, and written as follows: Author, title, journal, volume, pages and year. Each paper must contain a summary of not more than 12 lines.

FLUORIDE is listed in
Current Contents Agricultural
Food and Veterinary Sciences
IN MEMORIAM

George L. Waldcott, M.D.

Jan. 14, 1898 - July 17, 1982

The officers, and members of the Editorial and Advisory Boards of the International Society for Fluoride Research wish to express their deep and heartfelt sorrow at the sudden demise of the society's founder and the editor of its official journal FLUORIDE since its inception in 1968, George L. Waldcott, M.D., 84, following open heart surgery. A new aortic valve was successfully implanted, he was regaining his strength when postoperative complications developed.

Dr. Waldcott was residing in Leonard, Michigan. He was a practicing physician in the State of Michigan since November 23, 1923. A specialist in allergic diseases, he was a graduate of The University of Heidelberg, Germany, Medical School in 1921 and then interned at Henry Ford Hospital, Detroit, 1923 to 1924. He was a member of the American Medical Association, Michigan State and Wayne County Medical Societies, a diplomate of the American Board of Internal Medicine since July 1, 1937; a diplomate of the specialty of allergy since April 19, 1941; co-founder and former president of the Michigan Allergy Society (1936); Fellow of the American College of Physicians; Fellow of the American College of Chest Physicians; Fellow of the Academy of Allergy; Fellow of the American College of Allergists; honorary member of the French and Spanish Allergy Societies.

He was founder and chief of allergy clinics in four Detroit hospitals: Grace, Harper and Children's Hospitals of Michigan, and the North End Clinic (now Sinai Hospital); Emeritus Physician in Allergy at Harper Hospital and Honorary Physician at Hutzel Hospital, Detroit; former President of the Michigan Branch of the American College of Chest Physicians; former Chairman of the Air Pollution Committee of the American College of Chest Physicians, and of the American Academy of Allergy.

Dr. Waldcott was a pioneer in the specialty of allergy. His extensive clinical research has appeared in more than 200 publications, many in American Medical Association journals. Early in his career, his original research on human anaphylaxis, published in a series of articles, has been responsible for saving numerous lives.

He was first to report many new observations in his specialty. For example:
He was first to investigate the effect of tonsillectomy in allergic respiratory disease.

He was first to report allergy (asthma) due to local anesthesia.

He was first to call attention to the relationship of the thymus gland and lymphoid tissue to allergy.

He was first to describe allergic pneumonitis.

In 1927, he carried out the first pollen survey in Michigan and, in 1937, the first comprehensive annual fungus survey ever published.

He determined that rust and smut are major causes in respiratory allergy.

He was first to describe a case of allergic pneumonitis in a pigeon breeder (1945).

He presented one of the first clinical studies on antihistamines before the general session of the American Medical Association at its hundredth anniversary celebration.

He evaluated the effect of diets in chronic asthma and countered the abuse of dieting in chronic asthma.

He presented the first fatality of human anaphylaxis due to penicillin.

He introduced bronchoscopic lavage as an emergency treatment in status asthmaticus, which has saved numerous lives.

He presented the first case of urticaria due to pollen.

He carried out an experimental study on drug tolerance in allergic diseases.

He made the first clinical observations on the effect of smoking (other than cancer) on the respiratory tract.

His book on "Contact Dermatitis" (1953) in which he presented an original method of determining the source of the lesion by observing the pattern - termed a classic for many years to come - has been invaluable to physicians as well as to patients themselves in diagnosing the source of their ailment. He was contributing author of several other books pertaining to allergy.

His report in 1954 of the first fatality of human anaphylaxis from penicillin received editorial commendation in the Journal of the American Medical Association.

His experience with intolerance to drugs in his patients led him to the study of the effect of fluoride and of other environmental pollutants
on the human body. His book "Health Effects of Environmental Pollutants", second edition, March 1978 — one of the first on the subject — is being used as a textbook in universities here and abroad.

For the past 25 years, since 1955, he has been carrying out basic clinical research on how fluoride affects the human organism. His data have been presented in more than 80 reports in some of the most important medical journals in the U.S.A. and abroad. These publications include two monographs, one entitled "Fluoride in Clinical Medicine", the other "Acute Fluoride Intoxication", an article entitled "Fluoride in Food", and another article "The Physiologic and Hygienic Aspects of the Absorption of Inorganic Fluorides, Comments on the Symposium", the last-mentioned of which appeared in an American Medical Association publication. A chapter on the "Health Impact of Fluoride in Air and Water — International Clinical Data" in the Health Handbook edited by G.K. Chacko appeared in 1979 by the North-Holland Publishing Company, Amsterdam.

His most recent book "Fluoridation: The Great Dilemma", 1978, in collaboration with Professors A.W. Burgstahler and H.L. McKinney is the most encompassing presentation available on this subject.

His studies on fluoride include the administration of test doses of fluoride to allergic and non-allergic individuals and to those suspected of being intolerant to fluoridated water. During the course of those studies he had urinary analyses made for fluoride on more than 300 individuals. He determined levels in blood of various biochemical agents, especially calcium and phosphorus, before and after test doses with fluoride. He had analyses done for fluoride in food, eye cataracts, bones and other organs. He compared the fluoride content of normal—appearing aortas with that of calcified aortas, of normal skin with that of diseased skin, of normal lung tissue with that of diseased lung tissue.

He studied cases of fluorosis in Tampa, Florida (air pollution from fertilizer factories); Lubbock, Texas (natural fluoride water — 4.4 ppm); Saginaw, Michigan (fluoridated water); Palermo, Italy (natural fluoride water — 3 to 6 ppm); Port Maitland, Ontario, and Walcott, Iowa (air pollution due to a fertilizer factory); Wabash, Indiana (pollution from secondary aluminum smelters); Moehlin, Switzerland (pollution from an aluminum factory); Barcelona, Spain (fluoride-contaminated wine); Bolzano, Italy (aluminum and magnesium manufacturing); Kitimat, British Columbia (aluminum factory); Clarington, Ohio (near an aluminum plant). In Hannover, Germany he observed fluorosed cattle; in Stockholm, Sweden, fluorosed calves and horses; in Brussels, Belgium, fluorosed sheep. Just prior to his death he was engaged in the study of the health effects of environmental pollutants in Urbana, Ohio and in Hemlock, Michigan.

As founder of the International Society for Fluoride Research, a multi-disciplinary organization, the purpose of which is to investigate the biological effects of fluoride, and editor of FLUORIDE, its official publication, he has made an invaluable contribution toward understanding how fluoride in water, air, food and pharmaceutics affects humans, vegetation and animals, both wild and domestic.

Among awards, he received first prize for his exhibit on Occupational Allergy at the Congress of the European Academy of Allergy, The Hague,
Holland (May 11, 1958); another first prize from the journal "Cutis" in collaboration with Dr. V.A. Cecillioni, in March 1972 (page 331), for his manuscript on Chizzola Maculae, the description of a skin lesion which is a diagnostic tool in chronic fluoride poisoning. He was presented with a distinguished "Award of Merit" by the Board of Regents of the American College of Allergists, March 30, 1977 "in recognition of professional achievements, contributions to the medical literature, teaching on allergy and immunology and for more than 25 years service to patients and the profession of medicine, particularly in his field (of allergy)."

A comprehensive article in the Southern Medical Journal, March 1980, which includes case histories on the preskeletal phase of fluoride intoxication; presentation to his colleagues in October 1980 of a poster exhibit on "The Role of Fluoride in Clinical Medicine" - a condensation of his vast research on fluoride - at The Michigan Chapter of the College of Physicians at Sugar Loaf Mountain in Northern Michigan, and in the following January in Atlanta at the 1981 Winter Session of the American Medical Association - represent fitting highlights in his long and distinguished career in medicine in service to mankind. He will be missed not only in this country but in countries throughout the world.

EDITORIAL

OVERFLUORIDATION

Formerly acute fluoride intoxication usually resulted from suicide or homicide attempts, or from ingestion of fluoride compounds mistaken for a non-toxic agent such as baking powder (1). In recent years, however, several cases of acute fluoride intoxication have been associated with prophylaxis for tooth decay. In general, accidental mass poisoning from fluoride taken by mistake seems to have decreased, whereas accidents due to fluoridation of public water supplies have become more prevalent.

In at least 9 such accidents, the health of humans was affected (Table 1), and in 6 others the spill contributed to environmental pollution (Table 2). Ten incidents involved fluoridated municipal water supplies (1 ppm), whereas five occurred in rural schools where hydrofluosilic acid was being added to school drinking water (5 ppm).

It is difficult to evaluate the extent of adverse health effects caused by such accidents because temporary illness may not be severe enough to warrant hospitalization. Therefore no case records are available. Indeed, in some instances, neither the patients nor the physicians were sufficiently versed concerning the symptoms of fluoride poisoning even to suspect it. Besides, lay people and scientists have been constantly reassured that no harm can result from fluoridation. Furthermore, the responsible authorities desirous to maintain a good image for fluoridation tend to minimize the damage. For instance, in Harbor Springs the illness was attributed, at first, to high iron content of the water. It was four years before the true nature of the episode was publicized through the press (2).

The most serious spill recorded to date occurred on November 11, 1979 in Annapolis, Maryland, where one death and one near fatality were officially acknowledged among 8 patients undergoing hemodialysis. A sample of "soften"ed water used for dialysis November 13th contained 50 ppm (3). Officially the symptoms in the 8 dialysis patients were nausea, hypotension, substernal pain or pressure, diarrhea, itching, vomiting, malaise, dyspnea, flushing, localized numbness, diaphoresis, and headache (3).

Regarding this accident, the following facts are noteworthy:

1. Poisoning was not solely the result of drinking water but was also due to food and commercial beverage preparations, especially soft drinks, which had been contaminated by the overfluoridated water. In 13 of 103 individuals, the disease started 10 to 14 days after the spill undoubtedly due to consumption of food and beverages (4) processed with water which contained up to 30 ppm fluoride (3).

2. Existing diseases, such as diabetes and a tendency to kidney stones, became aggravated during the spill (4).

3. In 25 subjects, who vomited, the illness lasted from a few hours to 2 days. In three, the disease lingered up to day 18 (4).

4. Of four pregnant women, who feared possible damage to the fetus,
<table>
<thead>
<tr>
<th>Name of Town Reference</th>
<th>Date</th>
<th>Cause</th>
<th>F⁻ Content (ppm)</th>
<th>Duration of spill</th>
<th>Number Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szolnok, Hungary</td>
<td>3/29</td>
<td>Soda water plant failed to flush pipes after F equipment plant had been closed for repair.</td>
<td><650: orangeade</td>
<td>15-20 in restaurant</td>
<td>55 children</td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td>900: soda water</td>
<td>48 to 67 ppm in water</td>
<td>5 adults in kindergarten</td>
<td>150 Students at school picnic vomited after drinking orange juice made with water.</td>
</tr>
<tr>
<td>Orvosi Hetilop</td>
<td>108:306-7, 1967</td>
<td>BIF feeder bypass blocked</td>
<td>230 in coffee</td>
<td>12 adults</td>
<td></td>
</tr>
<tr>
<td>Harbor Springs, MT. PHS-CDC- Atlanta, 12-14-78. J.Amer. Water Works Assoc. 72: 238-243, 1980.</td>
<td>11/22</td>
<td>Tree fell on electric wire causing failure of F⁻ feeder control.</td>
<td><2400 mg/l: water</td>
<td>22 attending farmers' market on school grounds: nausea, vomiting, headache, cramps, dizziness, diarrhea</td>
<td></td>
</tr>
<tr>
<td>*Los Lunas, N.M. Pediatrics, 65: 897-900, 1980.</td>
<td>11/17</td>
<td>May 1979</td>
<td>Extra F⁻ flowed into water system during change of meter head.</td>
<td>375 (Bldg. A)</td>
<td>9.35 (Bldg. B)</td>
</tr>
<tr>
<td>Iseland Falls, ME. Report by Water Dist. Mgr.C. Given, 9/21/81.</td>
<td>11/13</td>
<td>Worker neglected to close valve</td>
<td>36: city water</td>
<td>17½ hrs.</td>
<td><6000 (?)</td>
</tr>
<tr>
<td>*Jonesboro Elem. School, Dept. of Human Services State of Maine, Augusta 10/22/81</td>
<td>10/6</td>
<td>Defective valve</td>
<td>25.3: water fountain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1981</td>
<td>84: coffee pot</td>
<td>236: left over cup of coffee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* School fluoridation
Table 2
Fluoride "Spills" Causing Environmental Pollution

<table>
<thead>
<tr>
<th>Town & Ref.</th>
<th>Date</th>
<th>Cause of Accident</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebanon, Pa.</td>
<td>8/20</td>
<td>Ruptured storage tank holding 6000 gal. of H_2SiF_6</td>
<td>About 1500 gal. leaked into holding ponds and Swatara Creek, killing fish.</td>
</tr>
<tr>
<td>Lebanon Daily News</td>
<td>2/22/75</td>
<td></td>
<td>5000 gals. spilled into Cedar River watershed.</td>
</tr>
<tr>
<td>Seattle Times</td>
<td>5/23/76</td>
<td></td>
<td>Five communities received up to 5.4 ppm excess F^- for several days. Public not informed.</td>
</tr>
<tr>
<td>Syracuse, N.Y.</td>
<td>March 1977</td>
<td>Ruptured underground F^- tank.</td>
<td>4000 gals. of F^- leaked into ground.</td>
</tr>
<tr>
<td>Auburn Citizen</td>
<td>3/29/77</td>
<td></td>
<td>Residents in a state of "water emergency" for 9 hrs.</td>
</tr>
<tr>
<td>Marin Co. Calif.</td>
<td>10/27-</td>
<td>F^- feeder valve malfunctioned.</td>
<td></td>
</tr>
<tr>
<td>San Rafael Independent</td>
<td>11/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal</td>
<td>11/25/77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potosdam, N.Y.</td>
<td>6/2-8/81</td>
<td>Burst pipe leading from F^- storage tank.</td>
<td></td>
</tr>
<tr>
<td>village of</td>
<td>7/20/81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pottsgard, N.Y.</td>
<td>8/10</td>
<td>"Diffuser", a plastic pipe that controls F^- flow into the water system, broke off. Entire contents of a drum of F^- entered the water supply.</td>
<td>Residents in a state of "water emergency" for 9 hrs.</td>
</tr>
<tr>
<td>Courier-Freeman</td>
<td>8/18/81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two had only minor symptoms, two others were completely symptom-free (4). In other kinds of mass poisoning as, for instance, the Minamata Bay mercury poisoning in Japan (5), pregnant women seemed to be unusually tolerant to toxic agents probably due in part to transfer of the poison across the placental barrier to the fetus. Such transfer of fluoride has been documented repeatedly (6).

5. In the fatal and near-fatal hemodialysis cases, the critical stage was not immediate but occurred several hours after the patients had experienced temporary improvement.

In Annapolis, the accident was due to failure of a waterworks employee to close a control valve which meters 22% hydrofluosilic acid from a 4000 gallon storage tank to a 50 gallon fluoride feeder. "One thousand gallons of the acid overflowed into drains leading to sand-filter-backwash and sludge-decant tanks from which decanted liquid was recycled as raw water." (3).
In Harbor Springs a tree, which accidentally fell across city power lines, shut off the electricity which controlled the feeding of the acid into the water (7,8). According to water department records, as much as 86 kg of 25% hydrofluosilicic acid may have been pumped into the system (7). The maximum fluoride level in water may have reached as high as 2400 mg/l in some residences (7).

In the other 11 instances, the accidents were due to equipment failure. It appears likely that the highly corrosive fluosilicic acid itself might be the chief culprit as it is liable to damage the equipment. It is a fact that the accidents have become more prevalent during the past few years following prolonged use of the equipment.

Although waterworks and health officials carefully monitor the fluoride content of water supplies, it will be difficult if not impossible to prevent similar accidents in the future.

These "accidents" reveal that fluoridation is by no means "completely safe" as the public is being continuously assured. No other water treatment procedure is as potentially hazardous as addition of fluoride to drinking water.

Bibliography

G.L.W.
FATE OF FLUORIDE FOLLOWING ITS ADMINISTRATION
INTO A BIOLOGICAL SYSTEM - AN IN VIVO STUDY

by

A.K. Susheela, Y.D. Sharma, Mohan Jha, M. Singh,
B. Jagannath, and S.K. Jain
New Delhi, India

SUMMARY: Although it is established that excessive ingestion of fluoride leads to its deposition in tissues, it is not fully understood how much of it is deposited, how much is excreted and what quantity of fluoride is in circulation. Whether the rate of uptake and retention of fluoride is the same or different with regard to different tissues is not known.

Some of these questions have been answered by conducting a survey on fluoride content in tissues of various organs of rabbits namely, calcified tissues, noncalcified tissues, serum and urine after ingestion of 10 mg NaF daily for varying periods of time.

Material and Methods

Fluoride Estimation (Serum): Rabbits, which were administered 10 mg NaF daily, were bled at an interval of 1, 2, 3, 6, 8, and 10 months after fluoride ingestion by marginal vein puncture of the pinna/ocular vein. Serum fluoride was determined by the method of Hall et al. (1) using fluoride ion specific electrode in a PHM 84 Research pH meter (Radiometer). The fluoride content of serum, expressed as ppm, is reported in Table 1.

Fluoride Estimation (Urine): Rabbits 2 months of age were administered (intragastrically) 10 mg NaF/kg body weight for varying periods of time. Urine samples were collected at different intervals starting from day one and fluoride content was estimated. The pH of the urine was adjusted between 2 and 3 with 30% perchloric acid and each sample was diluted to 5 ml with 0.1 M acetate buffer (pH 5.2). The fluoride ion concentration was determined by fluoride ion specific electrode as described by Hall et al. (1). The results are reported in Table 2.

Fluoride Estimation (Noncalcified Tissues): Samples of skeletal muscle, liver and kidney obtained from rabbits exposed daily to 10 mg NaF/kg body weight, sacrificed at 6 months, were ashed and fluoride content was determined by the method of Singer and Armstrong (2). Results are reported in Table 3.

From the Fluorosis Research Laboratory, Dept. of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Presented at the 12th I.S.F.R. Conference, May 16-18, 1982, St. Petersburg Beach, Florida.
Table 1
Serum F⁻ Level in Rabbit Following F⁻ Administration (10 mg/kg body weight)

<table>
<thead>
<tr>
<th></th>
<th>ppm F⁻ Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (3)</td>
<td>0.07 ± 0.02</td>
</tr>
<tr>
<td>NaF Treated:</td>
<td></td>
</tr>
<tr>
<td>1 month (5)*</td>
<td>0.29 ± 0.04</td>
</tr>
<tr>
<td>2 months (5)*</td>
<td>0.35 ± 0.08</td>
</tr>
<tr>
<td>3 months (5)*</td>
<td>0.40 ± 0.02</td>
</tr>
<tr>
<td>6 months (3)**</td>
<td>0.36 ± 0.08</td>
</tr>
<tr>
<td>8 months (3)**</td>
<td>0.45 ± 0.06</td>
</tr>
<tr>
<td>10 months (3)**</td>
<td>0.50 ± 0.01</td>
</tr>
</tbody>
</table>

Number in parenthesis indicate the number of experiments. S.D. = Standard Deviation; * P value < .05; ** P value < 0.005.

Table 2
Urinary F⁻ Following Daily Administration of 10 mg NaF/kg Body Weight

<table>
<thead>
<tr>
<th></th>
<th>Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1.46 ± 0.62 (7)</td>
</tr>
<tr>
<td>1 day treated</td>
<td>1.50 ± 0.00 (2)</td>
</tr>
<tr>
<td>5 days treated</td>
<td>2.83 ± 0.66 (3)</td>
</tr>
<tr>
<td>10 days treated</td>
<td>2.94 ± 2.20 (5)</td>
</tr>
<tr>
<td>12 days treated</td>
<td>2.02 ± 2.90 (5)</td>
</tr>
<tr>
<td>15 days treated</td>
<td>4.39 ± 3.22 (5)</td>
</tr>
<tr>
<td>16 days treated</td>
<td>5.18 ± 2.88 (5)</td>
</tr>
<tr>
<td>30 days treated</td>
<td>5.66 ± 4.06 (3)</td>
</tr>
<tr>
<td>45 days treated</td>
<td>4.12 ± 1.15 (5)</td>
</tr>
<tr>
<td>46 days treated</td>
<td>3.63 ± 3.32 (5)</td>
</tr>
<tr>
<td>10-11 months treated</td>
<td>2.59 ± 1.52 (15)</td>
</tr>
<tr>
<td>20-25 months treated</td>
<td>1.64 ± 1.22 (12)</td>
</tr>
</tbody>
</table>

Number of experiments indicated in parenthesis. Results expressed as ppm F⁻. S.D. = Standard deviation.
Table 3
F⁻ in Non-Calcified Tissues Following Daily Administration of 10 mg NaF/kg Body Weight

<table>
<thead>
<tr>
<th>Tissues</th>
<th>Normal Mean±S.D.</th>
<th>NaF Treated Mean±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscle</td>
<td>0.22±0.05</td>
<td>0.41±0.05</td>
</tr>
<tr>
<td>Liver</td>
<td>0.17±0.05</td>
<td>0.41±0.12</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.16±0.04</td>
<td>0.50±0.10</td>
</tr>
</tbody>
</table>

ppm F⁻ on wet tissue weight.
Rabbits administered NaF for 6 mos.
Four experiments in each group.
S.D. = Standard deviation
All values significant at P <.005.

Fluoride Estimation (Erythrocyte Membrane and Hemolysate): Blood samples were drawn from normal rabbits, 3 and 6 months of age, which had been administered 10 mg NaF/kg body weight daily through intragastric route. Erythrocytes were separated by centrifugation at 300 x g for 10 min. at 4°C using a SORVALL General Purpose Refrigerated Centrifuge (Model No. III). All subsequent centrifugations were carried out according to the modified method of Suketa et al. (3). Fluoride content of erythrocyte fluid (hemolysate) and that of the membrane was determined by the method of Hall et al. (1) using the fluoride ion specific electrode in a PHM 84 Research pH meter (Radiometer). The results, expressed in ppm fluoride, are reported in Table 4.

Table 4
F⁻ Content of Rabbit Erythrocyte Membrane and Hemolysate

<table>
<thead>
<tr>
<th></th>
<th>Erythrocyte Membrane*</th>
<th>Hemolysate**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.032±0.006</td>
<td>0.006±0.004</td>
</tr>
<tr>
<td>NaF Treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>0.042±0.009***</td>
<td>0.081±0.013****</td>
</tr>
<tr>
<td>6 months</td>
<td>0.043±0.005***</td>
<td>0.082±0.013****</td>
</tr>
</tbody>
</table>

* ppm F⁻ in membrane suspension containing 10 mg protein/ml
** ppm F⁻/gm% hemoglobin of hemolysate
*** P value <0.05; **** P value <0.005.
Fluoride Estimation (Calcified Tissues): Samples of cortical bone from diphysyal region of femur and cancellous bone from the iliac crest region of the pelvic girdle of rabbits were dissected out. Marrow free cortical and cancellous bone were defatted in ether acetone mixture (1:1 v/v) and dried in acetone. Fluoride in dry defatted bone ash was determined using a PHM 84 Research pH meter (Radiometer, Copenhagen) with a fluoride specific electrode (2). Results are reported in Table 5.

<table>
<thead>
<tr>
<th>Table 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F⁻ in Calcified (Osseous) Tissues Following Daily Administration of 10 mg NaF/kg Body Weight</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mean±S.D.</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>6 months</td>
</tr>
<tr>
<td>8 months</td>
</tr>
<tr>
<td>10 months</td>
</tr>
</tbody>
</table>

ppm F⁻ in dry defatted bone ash.
3 experiments were carried out, in all but one case. The one with 2 is indicated (2).
P value for bone fluoride is <.005.
S.D. = Standard deviation

Conclusion

The fluoride content of normal rabbit tissues and those administered NaF are reported in Tables 1-5.

The circulating level of fluoride is enhanced following fluoride ingestion. The increase in fluoride content is proportionate to the duration of fluoride administration, at least up to 10 months.

The data obtained on urinary fluoride content reveal that, due to fluoride ingestion, the amount of excreted fluoride increases up to 30 days. Thereafter, for unknown reasons, fluoride excretion gradually diminishes towards normal limits.

Among calcified tissues, cortical and cancellous bone differed significantly in their fluoride content. Cancellous bone, on NaF administration, revealed greater affinity for fluoride uptake, possibly due to its greater surface area exposed to circulation.

Volume 15 No. 4
October 1982
Susheela and Sharma

The data on fluoride content of noncalcified tissues, have revealed that less fluoride is incorporated into noncalcified tissues compared to calcified tissues. However, in noncalcified tissues it is evident that different organ tissues vary in their affinity for fluoride and in their fluoride content. On NaF administration, all soft tissues investigated, including the erythrocyte membrane and hemolysate, have shown enhanced fluoride content.

Excessive fluoride deposition in calcified and noncalcified tissues leads to certain specific manifestations. This aspect has been explored with special reference to collagenous and noncollagenous constituents.

Acknowledgement

The authors wish to acknowledge the support received from the Department of Environment (Government of India) and the International Development Research Centre, Canada.

Bibliography

CERTAIN FACETS OF F− ACTION ON COLLAGEN PROTEIN IN OSSEOUS AND NONOSSEOUS TISSUES

by

A.K. Susheela and Y.D. Sharma
New Delhi, India

SUMMARY: Collagen, a fibrous protein, constitutes the major bulk of the organic matrix of bone and tendon. In order to probe into the defective mineralization process known to occur as a result of fluoride toxicity and fluorosis, the collagenous constituents have been investigated with reference to 1) Amino acid composition, 2) Collagen content, 3) Collagen biosynthesis, 4) Collagen crosslink precursors and 5) Collagen bound collagenolytic activity.

From the Fluorosis Research Laboratory, Dept. of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
Due to the wide range of variation in the methodology employed for investigations, these five aspects are dealt with in separate sections, namely, Part I to V.

Part I - Amino Acid Composition of Bone and Tendon: Although different types of collagen have been identified in different tissues, tendon and bone are known to have the same type of collagen (Type I), but they differ in their amino acid composition (1,2). In collagen, some amino acids are introduced as a consequence of certain post-translational changes such as hydroxylation of proline and lysine giving rise to hydroxyproline and hydroxylysine. Both of these amino acids are important to make collagen biologically stable (3). Hydroxyproline participates in the stabilization of the triple helical structure of tropocollagen molecules. Hydroxylysine provides the base for introducing carbohydrate moieties into collagen. It is the carbohydrate moieties, that participate in the calcification process.

Material and Methods

Rabbits in two groups were pair fed and maintained under identical laboratory conditions. One group was given daily 10 mg NaF/kg body weight through the intragastric route. The second group, given no NaF, served as control. The animals were sacrificed after 8 months. Both cortical bone and tendon were dissected out and cleaned from extraneous material.

Preparation of Acid Soluble Collagen of Tendon: Tendon was cut into small pieces and ground at very low temperature. In tendon, the soluble collagen was preferred as adequate quantity was obtained from the tissue. The tissue was initially extracted with 0.05 M tris-HCl buffer (pH 7.6) containing 1 M NaCl for 48 hours at 4°C. The residue was extracted with 0.5 M acetic acid for 48 hours at low temperature. The supernatant thus obtained containing acid soluble collagen was further purified by the method of Kang, et al. (4).

Preparation of Insoluble Collagen of Bone: In the bone tissue, the insoluble collagen was extracted as the mature collagen was considered for analysis. Bone was cut into small pieces, ground and demineralized with 0.35 M EDTA at very low temperature. The demineralized bone was extracted with Tris-HCl buffer containing NaCl and subsequently with 0.5 M acetic acid as described above and the insoluble collagen was prepared as described by Fujii and Tanzer (5).

Amino Acid Analysis: The acid soluble collagen fraction from tendon and insoluble collagen fraction from bone were hydrolyzed under nitrogen with 6 N HCl at 115°C for 20 hours in sealed ampules. The hydrolysate, thus obtained, was dried in vacuo to remove the acid. Amino acid analysis was carried out with the Technicon Amino Acid Autoanalyzer.

Results and Conclusions

Results obtained on tendon and bone collagen are reported in Tables 1 and 2. In normal samples of tendon and bone, glycine showed the high-
Table 1

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Normal</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>320</td>
<td>319</td>
</tr>
<tr>
<td>Proline</td>
<td>118</td>
<td>150</td>
</tr>
<tr>
<td>Alanine</td>
<td>105</td>
<td>107</td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td>90</td>
<td>64</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>Arginine</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>Serine</td>
<td>33</td>
<td>32.5</td>
</tr>
<tr>
<td>Lysine</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Leucine</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Valine</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Threonine</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Methionine</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Hydroxylysine</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Histidine</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3.9</td>
<td>4</td>
</tr>
<tr>
<td>Ammonia</td>
<td>35</td>
<td>37</td>
</tr>
</tbody>
</table>

Proline/Hydroxyproline Ratio 1.31

Values in both tables are expressed as residues per 1000 residues and are the mean of 3 experiments.
est concentration which is almost one third of the total amino acids. Pro-
line and hydroxyproline also showed higher concentrations. The ratio of
proline/hydroxyproline in normal tendon and bone collagen is recorded
as 1.31 and 1.15 respectively. This ratio is an index of the rate of hy-
droxylation of proline residues.

In samples obtained from rabbits which had ingested fluoride, the hy-
droxyproline residues were decreased whereas proline residues were in-
creased. This resulted in increased proline/hydroxyproline ratio in flu-
oride-treated samples. It was also observed that lysine residues were re-
duced in experimental samples. The concentration of other amino acids did
not change following fluoride ingestion.

The present investigation indicates that fluoride ingestion leads to
the reduction in hydroxyproline content and, in consequence, proline res-
ides are increased. The reduction in hydroxylation could be due to the
depletion in ascorbic acid content (6) a cofactor for prolyl hydroxylase
(7).

The deficiency in hydroxyproline is likely to affect the stability of
the collagen. The deficiency in lysine residues would ultimately de-
crease collagen crosslinks, increasing the solubility of the protein.

From the present study, therefore, it is concluded that fluoride in-
terferes with the normal hydroxylation steps of protein producing inade-
quately hydroxylated collagen. The collagen would also be inadequately
crosslinked due to reduced lysine content.

Part II - Collagen Content: Having observed reduction in the hydro-
xypoline and lysine content of cortical bone and tendon, it was of in-
terest to investigate the status of hydroxyproline content in cancellous
bone and other noncalcified tissues following fluoride ingestion. The
collagen content was assessed in terms of hydroxyproline content in os-
seous and nonosseous tissues.

Material and Methods

Normal healthy rabbits and rabbits administered daily 10 mg NaF/kg
body weight for varying periods of time were sacrificed. Both cancellous
and cortical bone from the iliac crest and diphysal region of femur re-
spectively were taken and bone from marrow cleaned. Bone samples were
defatted and dried using a mixture of ether and acetone (1:1) and acetone.
Dry fat free bone samples were analyzed for hydroxyproline content ac-
cording to the method of Kivirikko et al. (8). The results obtained for
hydroxyproline content of cancellous and cortical bone are shown in Table
3.

The hydroxyproline content was also determined in osseous and non-
osseous tissues after hydrolyzing with 6 N HCl at 110°C. for 20 hours and
measuring the content in hydroxylate according to the method of Kivirikko
(8). In this series of experiments, the results are expressed as µg hy-
droxyproline/mg wet tissue (Table 4).
Table 3
Hydroxyproline Content of Cortical and Cancellous Bone Before and After F⁻ Ingestion

<table>
<thead>
<tr>
<th></th>
<th>Cortical Bone Mean±S.D.</th>
<th>Cancellous Bone Mean±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Bone (5)</td>
<td>2.15±0.61</td>
<td>3.32±0.30</td>
</tr>
<tr>
<td>After F⁻ Ingestion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 months (5)</td>
<td>1.45±0.61</td>
<td>2.76±0.24</td>
</tr>
<tr>
<td>6 months (5)</td>
<td>1.42±0.61</td>
<td>2.70±0.24</td>
</tr>
<tr>
<td>8 months (5)</td>
<td>1.81±0.01</td>
<td>2.96±0.26</td>
</tr>
<tr>
<td>10 months (5)</td>
<td>1.63±0.06</td>
<td>1.87±0.87</td>
</tr>
<tr>
<td>12 months (5)</td>
<td>1.78±0.02</td>
<td>1.96±0.05</td>
</tr>
</tbody>
</table>

The results are expressed as mg% on fat free dry weight.
P value <.05

Table 4
Effect of 10 mg NaF/kg Body Weight on Hydroxyproline Content of Osseous and Nonosseous Tissues After 6 Months Exposure

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Normal Mean±S.D.</th>
<th>NaF Treated Mean±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone*</td>
<td>34.44±1.08</td>
<td>27.92±3.17</td>
</tr>
<tr>
<td>Tendon*</td>
<td>66.23±2.81</td>
<td>60.08±1.78</td>
</tr>
<tr>
<td>Trachea*</td>
<td>35.90±1.45</td>
<td>31.06±2.73</td>
</tr>
<tr>
<td>Skin*</td>
<td>59.08±2.78</td>
<td>52.35±2.44</td>
</tr>
<tr>
<td>Lung*</td>
<td>11.08±0.90</td>
<td>9.69±0.80</td>
</tr>
<tr>
<td>Kidney**</td>
<td>4.78±0.70</td>
<td>4.11±0.56</td>
</tr>
<tr>
<td>Heart*</td>
<td>4.15±0.75</td>
<td>3.87±0.50</td>
</tr>
</tbody>
</table>

Values are expressed as µg hydroxyproline/mg wet tissue.
The number of experiments carried out are 5 in each group.
* P value <0.01 (students' t test applied)
** P value <0.05 (students' t test applied)

Results and Conclusions

Hydroxyproline content of cancellous bone is greater than that in cortical bone. The hydroxyproline content both in cancellous and cortical bone is reduced significantly due to fluoride ingestion.
The investigations on osseous and nonosseous tissues have revealed that tendon has the highest hydroxyproline content compared to the other nonosseous tissues investigated. After NaF ingestion for a period of 6 months, all the tissues investigated revealed a reduction in hydroxyproline content.

These observations suggest that in fluoride toxicity the hydroxyproline content is reduced both in osseous and nonosseous tissues. This possibly may reflect on the collagen content of the tissues.

Part III - Studies on 14C Proline Uptake(9); The primary structure of collagen protein is known to vary in different tissues from Type I to IV and proline is an essential amino acid component of collagen. Therefore the uptake of 14C labelled proline was assessed as an index of collagen synthesis in a wide range of tissues from rabbits after fluoride ingestion.

Material and Methods

Normal healthy young rabbits were treated intragastrically with 50mg NaF/kg body weight daily for periods ranging from 22 to 83 days. The rabbits intoxicated with NaF were injected subcutaneously with carbon labelled proline (1 μCi/100 gm body weight; Sp: activity 125 mCi/mmol, Radio-chemical Centre, Amersham). The animals were sacrificed after 2 hours and tissues such as bone, tendon, pinna, trachea, skin, muscle, lung and kidney cortex were dissected out and homogenized in 0.05 M Tris-HCl buffer (pH 7.6) containing 0.005 M CaCl$_2$.

A known volume of tissue homogenate was subjected to collagenase digestion at 37°C. (collagenase 140 units/mg Worthington Biochemicals) for 6 hours. The hydrolyzed collagen was separated from residual protein by centrifugation at 5000 x g for 10 min. according to the method of Chia Lin Hu et al. (10). The supernatant containing the hydrolyzed collagen was separated. The residual protein was dissolved in 0.5 N NaOH (11,12). Known aliquots of supernatant (i.e. hydrolyzed collagen) and the residual fractions were treated with toluene (Sample solubilizer) for 2 hours at 60°C. A known volume of sample scintillation cocktail containing PPO (5 mg) and POP (0.5 mg) in toluene (1 liter), was added and the rate of uptake of 14C proline was counted using a Packard Tricarb Liquid Scintillation Spectrometer. Counts per minute (cpm) obtained at 40% efficiency were corrected for 100% efficiency. The protein content was measured by Lowry's method (13). The rate of uptake of 14C proline is expressed as dpm/mg protein. The background count was subtracted from all the test samples reported under results.

Results and Conclusions

The details of the animals used for experimentation are reported in Table 5. Considerable variation in the rate of uptake of 14C proline was observed between different tissues (Bar 1-4). The highest rate of 14C proline uptake was observed in hydrolyzed collagen fractions of tissues of normal bone and tendon which are known to be mainly constituted of collagen Type I. Bone and tendon in fluorosed animals showed the maximal re-
Table 5
Details of Rabbits Used for Experimentation

<table>
<thead>
<tr>
<th>Rabbit</th>
<th>Age When Sacrificed (in months)</th>
<th>Duration of NaF Treatment(in days)</th>
<th>Body Weight in gm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial Final</td>
<td></td>
</tr>
<tr>
<td>N₁</td>
<td>2</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>N₂</td>
<td>1</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>N₃</td>
<td>2</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>F₁</td>
<td>2.5</td>
<td>22</td>
<td>700</td>
</tr>
<tr>
<td>F₂</td>
<td>3</td>
<td>24</td>
<td>800</td>
</tr>
<tr>
<td>F₃</td>
<td>4</td>
<td>80</td>
<td>1000</td>
</tr>
<tr>
<td>F₄</td>
<td>5</td>
<td>83</td>
<td>950</td>
</tr>
</tbody>
</table>

All animals used were male rabbits. N₁ - N₃ = Normal rabbits. F₁ - F₄ = Rabbits administered NaF.

Reduction in 14C proline uptake. A significant reduction in the rate of 14C proline uptake was also found in all other tissues studied which contain collagen Types II, III and IV.

Irrespective of whether a tissue contains collagen Type I, II, III or IV, the incorporation of 14C proline is severely impaired both in osseous and nonosseous tissues following fluoride ingestion. This finding has been further corroborated by analyzing the rate of uptake with reference to various collagen fractions namely, 1) Hydrolyzed collagen fraction obtained by collagenase digestion and separated at 9000 g (14), 2) Native collagen fibril obtained by thermal reconstitution (15-17), 3) Total and soluble fraction obtained following extraction, 4) Total noncollagenous protein fraction and 5) Alkaline soluble collagen fraction.

The result obtained for native collagen fibril is a specific index for 14C proline uptake and rate of collagen biosynthesis. The animals which have been subjected to fluoride intoxication for varying periods of time have shown significant reduction in the rate of uptake of 14C proline in all 5 fractions studied. However, the rate of uptake of 14C proline of native collagen fibril of both tendon (Table 4) and bone (Table 7) has been reduced significantly indicating reduced collagen biosynthesis in fluoride intoxication.

It can be argued that the changes observed in the rate of 14C proline uptake may not necessarily be due to the unique effect of fluoride, as a high degree of intoxication could be attributed to 50 mg dose. The extent of intoxication is also being revealed by the reduction in body weight by 150 to 300 gm over a period of 22 to 83 days.
Figure 1

EFFECT OF FLUORIDE TOXICITY ON THE INCORPORATION OF $^{14}_C$ PROLINE IN HYDROLYZED COLLAGEN, RESIDUAL & TOTAL PROTEIN OF RABBITS

<table>
<thead>
<tr>
<th>Hydrolyzed Collagen</th>
<th>Residual Protein</th>
<th>Total Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3 - NORMAL (1 MONTH OLD)</td>
<td>N2 - NORMAL (2 MONTHS OLD)</td>
<td>F1 - 83 DAYS; 5 MONTHS OLD; F2 - 32 DAYS; 2 1/2 MONTHS OLD</td>
</tr>
<tr>
<td>F2 - 80 DAYS; 4 MONTHS OLD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2

EFFECT OF FLUORIDE TOXICITY ON THE INCORPORATION OF $^{14}_C$ PROLINE IN HYDROLYZED COLLAGEN, RESIDUAL & TOTAL PROTEIN OF RABBITS

<table>
<thead>
<tr>
<th>Hydrolyzed Collagen</th>
<th>Residual Protein</th>
<th>Total Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3 - NORMAL (1 MONTH OLD)</td>
<td>N2 - NORMAL (2 MONTHS OLD)</td>
<td>F1 - 83 DAYS; 5 MONTHS OLD; F2 - 22 DAYS; 2 1/2 MONTHS OLD</td>
</tr>
<tr>
<td>F2 - 80 DAYS; 4 MONTHS OLD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3

EFFECT OF FLUORIDE TOXICITY ON THE INCORPORATION OF $^{16}_C$ PROLINE IN HYDROLYZED COLLAGEN, RESIDUAL & TOTAL PROTEIN OF RABBITS

<table>
<thead>
<tr>
<th>Hydrolyzed Collagen</th>
<th>Residual Protein</th>
<th>Total Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 - NORMAL (1 MONTH OLD)</td>
<td>N2 - NORMAL (2 MONTHS OLD)</td>
<td>F1 - 83 DAYS; 5 MONTHS OLD; F2 - 22 DAYS; 2 1/2 MONTHS OLD</td>
</tr>
<tr>
<td>F2 - 80 DAYS; 4 MONTHS OLD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4

EFFECT OF FLUORIDE TOXICITY ON THE INCORPORATION OF $^{14}_C$ PROLINE IN HYDROLYZED COLLAGEN, RESIDUAL & TOTAL PROTEIN OF RABBITS

<table>
<thead>
<tr>
<th>Hydrolyzed Collagen</th>
<th>Residual Protein</th>
<th>Total Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney (Cortex)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 - NORMAL (1 MONTH OLD)</td>
<td>N2 - NORMAL (2 MONTHS OLD)</td>
<td>F1 - 83 DAYS; 5 MONTHS OLD; F2 - 22 DAYS; 2 1/2 MONTHS OLD</td>
</tr>
<tr>
<td>F2 - 80 DAYS; 4 MONTHS OLD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6

Effect of NaF on the Incorporation of 14C Proline in Collagenous and Noncollagenous Protein of Tendon in Rabbits

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>NaF Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
<td>N2</td>
</tr>
<tr>
<td>Collagenase digested fraction</td>
<td>9.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Native collagen fibril</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Acid soluble collagen*</td>
<td>3.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Noncollagenous protein*</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Alkali soluble collagen</td>
<td>6.5</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Results expressed as 10^{-4} x dpm/mg protein.

* Total count as 10^{-4} x dpm

The noncollagen protein fraction of both tendon and bone have also revealed a reduction in 14C proline uptake, indicating that the high degree of intoxication has also affected the noncollagenous proteins. This

Table 7

Effect of NaF on the Incorporation of 14C Proline in Collagenous and Noncollagenous Protein of Bone in Rabbits

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>NaF Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
<td>N2</td>
</tr>
<tr>
<td>Collagen digested fraction</td>
<td>4.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Native collagen fibril</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Acid soluble collagen*</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Noncollagenous protein*</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Alkali soluble collagen</td>
<td>3.8</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Results expressed as 10^{-4} x dpm/mg protein.

* Total count as 10^{-4} x dpm.
aspect has been further explored by carrying out yet another set of experiments on 14C proline uptake on rabbits by administering a low dose of NaF namely 10 mg/kg body weight.

Table 8 reveals the details on 10 mg dose of NaF and experimented upon for the 5 different fractions of collagen.

Table 8

Effect of NaF on the Incorporation of 14C Proline in Collagenous and Noncollagenous Protein of Bone and Tendon in Rabbit

<table>
<thead>
<tr>
<th></th>
<th>Bone Control</th>
<th>NaF Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagenase digested fraction</td>
<td>6.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Native collagen fibril</td>
<td>1.6</td>
<td>0.61</td>
</tr>
<tr>
<td>Acid soluble collagen **</td>
<td>2.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Noncollagenous protein**</td>
<td>0.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Alkali soluble collagen</td>
<td>1.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Tendon

<table>
<thead>
<tr>
<th></th>
<th>NaF Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagenase digested fraction</td>
<td>4.8</td>
</tr>
<tr>
<td>Native collagen fibril</td>
<td>1.4</td>
</tr>
<tr>
<td>Acid soluble collagen**</td>
<td>2.3</td>
</tr>
<tr>
<td>Noncollagenous protein**</td>
<td>1.6</td>
</tr>
<tr>
<td>Alkali soluble collagen</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Results expressed as 10^{-4} x dpm/mg protein. *Control animal: 1 month old, 600 gm body weight. NaF treated animal: Initial body weight 800 gm, final body weight 1050 gm, 1 animal in each group. **Total count as 10^{-4} x dpm.

It is evident that, in the NaF treated animal, the first 3 fractions namely collagenase digested, native collagen fibril and acid soluble collagen of both bone and tendon have shown a reduced rate of 14C proline uptake compared to the control.

The nature of reduction in 14C proline uptake in the animal administered a low dose of NaF has been in the same pattern as those animals on
a high dose of NaF except for the noncollagen protein fraction which has shown an increased rate of 14C uptake both in bone and tendon. This observation further confirms our finding that, in a high degree of intoxication, other proteins are likely to be affected. However, in low dose, the collagen protein is more specifically involved. Also in low dose of NaF estimation, the body weight of the animal has increased by 250 gm over a period of 175 days and, even under such circumstances, the collagen protein biosynthesis is considerably affected.

Part IV - Collagen Crosslink Precursors(18) in part I, II and III of this article, the data suggests that excessive ingestion of fluoride leads to the reduction in hydroxyproline, lysine and total collagen contents. Efforts have been made to study the nature of the collagen laid down by investigating the saturated peptide-bound aldehydes which are known to be the crosslink precursors. The present communication, therefore, reports the status of the saturated peptide-bound aldehyde content in salt soluble collagen following excessive fluoride ingestion.

Material and Methods

Rabbits, 1.3 to 1.5 kg body weight, were maintained in two groups under identical laboratory conditions. One group was given every 24 hours, 50 mg NaF/kg body weight through the intragastric route. The other group served as controls. On day 80, 154 and 176 experimental animals and age-matched controls, were sacrificed. The neutral salt soluble collagen was extracted and purified as described by Kang et al. (4). The collagen samples were then dissolved in 0.1 M glycine buffer (pH 4.0) and denatured at 60°C for 20 minutes. The saturated aldehyde associated with salt soluble collagen was measured spectrophotometrically at 312 nm according to the method of Paz et al. (19) using N-methylbenzothiazolonehydrozone (MBTH) reagent.

Results and Conclusions

The results are presented in Table 9. Although salt soluble collagen is a minor fraction of total tissue collagen, this fraction was preferred for the present study as it contains mostly topocollagen molecules. The data obtained on bone, tendon, trachea and skin of the control animals revealed that the saturated aldehyde content increased with the duration of the experimental phase, possibly indicating increased crosslink precursors with advancing age. Age related changes in collagen crosslink are known to occur (20).

It is also evident that fluoride ingestion led to significant reduction in saturated aldehyde content \bar{Q}_{A} of all tissues investigated. However, the variation observed in the extent of reduction is possibly due to different tissues having different types of collagen. The reduction in saturated aldehyde content could be due to the impairment in its formation. It is known that the two major factors namely, the copper content and copper dependant lysyl oxidase, which are responsible for the formation of aldehyde, are also affected in fluoride toxicity (21,22).
Table 9

Effect of NaF on Saturated Aldehyde Content of Salt Soluble Collagen of Rabbit Tissues (Means±S.D., n=5)

<table>
<thead>
<tr>
<th></th>
<th>80 days</th>
<th>154 days</th>
<th>176 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.42±0.03</td>
<td>0.63±0.01</td>
<td>0.78±0.02</td>
</tr>
<tr>
<td>Experimental</td>
<td>0.24±0.03</td>
<td>0.34±0.03</td>
<td>0.21±0.03</td>
</tr>
<tr>
<td>Tendon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.42±0.02</td>
<td>0.54±0.04</td>
<td>0.72±0.03</td>
</tr>
<tr>
<td>Experimental</td>
<td>0.12±0.03</td>
<td>0.12±0.03</td>
<td>0.15±0.03</td>
</tr>
<tr>
<td>Trachea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.30±0.05</td>
<td>0.42±0.04</td>
<td>0.51±0.03</td>
</tr>
<tr>
<td>Experimental</td>
<td>0.22±0.03</td>
<td>0.34±0.01</td>
<td>0.12±0.03</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.27±0.03</td>
<td>0.60±0.02</td>
<td>0.57±0.08</td>
</tr>
<tr>
<td>Experimental</td>
<td>0.12±0.03</td>
<td>0.20±0.02</td>
<td>0.40±0.04</td>
</tr>
</tbody>
</table>

Values are expressed as μM of acetaldehyde/100 mg of collagen. P < 0.001 (student's t test) for all comparisons with respective control tissues.

It is therefore suggested that due to excessive ingestion of fluoride, the tropocollagen molecules with a reduced number of aldehydes are likely to produce inadequately crosslinked collagen fibers. The lysine residues, which were also reduced due to fluoride ingestion, result in the formation of a lower number of covalent crosslinks in collagen.

Part V - Collagen Catabolism: The reports currently available in the literature are inadequate to elucidate fluoride action on collagen degradation. This aspect has been explored to some extent and data reported.

Material and Methods

Rabbits in two batches were pair fed and maintained under identical laboratory conditions. One batch of animals received 10 mg NaF/kg body weight daily through the intragastric route. Rabbits were sacrificed after 12 months and tissues such as bone, tendon, trachea, lung, kidney and heart were dissected out. The methodology employed for hydroxyproline estimation and the data obtained have been reported in Part II, Table 4.

The collagen bound collagenase activity in each of the tissues listed above, was determined. The tissues were homogenized in ice cold 0.01 M CaCl₂ containing 0.25% (v/v) Triton x 100. It was centrifuged at 6000 g for 20 min. at 4°C. A known amount of 6000 g pellet was hydrolyzed in 6
N HCl to determine its hydroxyproline content. The remaining part was further processed to determine the collagen bound collagenase activity(23). The results obtained on collagen bound collagenase activity are expressed as μg hydroxyproline released/mg hydroxyproline in 6000 g pellet/ hour at 37°C.

It is evident from the data that HP, a measure of collagen content, decreased in all tissues investigated. From the table on collagen bound collagenolytic activity it is noted that, as a consequence of fluoride ingestion, the HP released was enhanced in all the tissues investigated. This indicates that the collagen laid down/synthesized during fluoride ingestion is underhydroxylated and inadequately crosslinked and is rapidly catalyzed.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Normal Mean±S.D.</th>
<th>Experimental Mean±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>2.50±0.70</td>
<td>6.50±0.90</td>
</tr>
<tr>
<td>Trachea</td>
<td>1.28±0.34</td>
<td>3.30±1.12</td>
</tr>
<tr>
<td>Tendon</td>
<td>2.42±1.14</td>
<td>6.73±2.07</td>
</tr>
<tr>
<td>Lung</td>
<td>0.64±0.38</td>
<td>1.30±0.51</td>
</tr>
<tr>
<td>Kidney</td>
<td>2.29±0.36</td>
<td>3.68±0.99</td>
</tr>
<tr>
<td>Heart</td>
<td>0.79±0.09</td>
<td>1.10±0.23</td>
</tr>
</tbody>
</table>

Mean of 5 number of experiments, P value < 0.01

The results obtained in Parts I through V, strongly suggest that, due to excessive ingestion of fluoride, the collagen laid down both in osseous and nonosseous tissues is abnormal.

Acknowledgement

The authors wish to acknowledge the grants-in-aid received from the Department of Environment (Government of India) and the International Development Research Centre, Canada.

Bibliography

Volume 15 No. 4
October 1982
F- INGESTION AND ITS INFLUENCE ON GLYCOSAMINOGLYCANS IN CANCELLOUS AND CORTICAL BONE - A STRUCTURAL AND BIOCHEMICAL STUDY

by

A.K. Susheela, and Mohan Jha
New Delhi, India

SUMMARY: The noncollagenous constituents, mainly the glycosaminoglycans, are also important as collagenous constituents in understanding fluoride action because the noncollagenous constituents provide the milieu/environment for calcification of collagen fibers. The noncollagenous constituents have been explored in rabbit cortical and cancellous bone after ingestion of 10 mg of sodium fluoride daily for varying time intervals. The major pathological lesion, namely osteoid formation in cancellous bone, its cellular and biochemical characteristics have been explored and results reported.

The sulphated glycosaminoglycans, which appeared in excessive amounts due to fluoride ingestion in cancellous bone, were extracted, purified and quantitated to assess the extent of accumulation and to identify the various isomeric forms. The sulphated glycosaminoglycans known to exist in normal cancellous bone contain chondroitin sulphate A, C and hyaluronic acid. In fluorosed cancellous bone, besides chondroitin sulphate A, C and hyaluronic acid, the presence of dermatan sulphate (chondroitin sulphate B) was detected and confirmed. The occurrence and accumulation of dermatan sulphate in the cartilaginous loci (osteoid) is possibly the major factor for the osteoid to remain unmineralized providing the embryonic nature of bone in fluorosis and fluoride toxicity.

The status of glycosaminoglycans in cancellous and cortical bone was investigated separately as these two types of bone may differ biochemically (I) and the response of cancellous and cortical bone to fluoride toxicity is unlikely to be the same. Moreover our objective was to investigate the reason(s) that the clinical manifestations of fluorosis is confined to specific bony sites of the body namely, vertebral column, pelvic girdle, joints, etc.

Part I of the report deals with the structural aspects and Part II with the biochemical aspects.

Part I - Structural Aspects

Material and Methods

Rabbits aged 2 months were fed daily 10 mg NaF/kg body weight through the intragastric route up to 10 months after which they were sacrificed.

From the Fluorosis Research Laboratory, Dept. of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Presented at the 12th I.S.F.R. Conference, May 16-18, 1982, St. Petersburg Beach, Florida.
The iliac crest region of the pelvic girdle and thoracic vertebra were dissected out and fixed in 10% neutral formalin containing 1% cetyl pyridinium chloride (CPC) to preserve the glycosaminoglycans. The fixed tissue was decalcified in a mixture of 10% formic acid and 20% sodium citrate mixed in a ratio of 1:1. The decalcified tissue was blocked in paraffin and 5 µ thick sections were prepared. These sections were deparaffined and stained with Alcian blue (acidified with acetic acid to pH 2.6) and freshly prepared aqueous solution of Ruthenium red to localize glycosaminoglycans (GAG) and proteoglycans (protein complex of GAG) respectively.

Sections were also incubated in a solution containing 3000-4000 IU of hyaluronidase/ml of 0.15 M NaCl (pH 6) for 10-60 min. at 37°C. prior to Alcian blue staining to digest those glycosaminoglycans which are susceptible to enzymic digestion. Control sections were incubated for the same length of time under the same conditions in 0.15 M NaCl prior to Alcian blue staining. Bone sections obtained from age matched control animals, which did not receive NaF and cortical bone (diaphysis of long bones) samples were likewise treated in a similar way.

Results

Bone samples from the iliac crest region of the pelvic girdle and the body and median spine of the vertebra obtained from animals treated with fluoride for 8 and 10 months and various regions of the trabecular bone revealed osteoid formation. Morphologically, the cells confined to the osteoid region resemble chondrocytes. The intercellular matrix of the osteoid revealed Alcian blue and Ruthenium red positive material indicating the presence of glycosaminoglycans and proteoglycans. Isolated patches of Alcian blue and Ruthenium red positive areas were also observed in the trabeculae which revealed the presence of cells which were not well differentiated into chondrocytes. Osteoids at various stages of formation were thus seen in the bone sections. Even after hyaluronidase digestion, Alcian blue positive intercellular material was observed in the osteoids indicating the presence of hyaluronidase resistant glycosaminoglycans in the matrix (Figs. 1-3).

In cortical bone no such osteoid formation was seen. However, the matrix did reveal highly basophilic reaction, when Ruthenium red stain was used. The striking structural variations observed in the cortical bone due to excessive ingestion of fluoride are 1) increase in cortical thickness and 2) enhancement of the diameter of the osteon (Table 1).

Conclusions

Morphologically, the cells of the osteoid resemble chondrocytes. The chondrocytes also reveal stacking arrangement and it appears that the osteoid resemble fibrocartilage. The appearance of chondrocytes in the trabeculae may possibly be due to activated differentiation of totipotent mesenchymal cells into chondrocytes under the influence of fluoride. It is also possible that the previously existing osteocytes and osteoblasts become dedifferentiated into totipotent cells which further undergo re-
differentiation into chondrocytes.

The intercellular matrix of the osteoid has revealed high content of glycosaminoglycans and proteoglycans. The hyaluronidase resistant Alcian blue positive material is possibly due to the presence of dermatan sulphate.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Normal (5)</th>
<th>F- Treated (5)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical thickness in mm</td>
<td>1.39±0.08</td>
<td>2.50±0.12</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>Diameter of osteon in μ</td>
<td>3.80±0.80</td>
<td>5.80±0.40</td>
<td>P < 0.05</td>
</tr>
</tbody>
</table>

Numbers in parenthesis indicate the number of experiments carried out. Exposure to F- = 8-10 months.

Part II - Biochemical Aspects

The structural observations made in cancellous and cortical bone lead to the biochemical analysis of GAG and its characterization.
Chemical Analysis of GAG

Material and Methods

Rabbits aged 2 months were fed daily 10 mg NaF/kg body weight through the intragastric route up to 10 months. The rabbits were killed at intervals of 6, 8, and 10 months after fluoride ingestion. The cortical diphyseal bone from the femur and cancellous bone from the iliac crest region were dissected out and cleaned from marrow. Fat free bone powder was prepared using an ether-acetone mixture (1:1) and acetone. One gram of bone powder both from cortical and cancellous bone was suspended in 40 ml of digestion mixture containing 0.005 M cysteine hydrochloride and 0.2 M EDTA for simultaneous demineralization. An aqueous solution of papain (0.1 ml/40 ml of digestion mixture) was also added. The enzyme papain contained 1.7 mg of protein (10-15 units/mg protein). The GAG released after demineralization and proteolytic enzyme digestion was precipitated with cetyl pyridinium chloride (CPC) as described by Hjerquist and Vejlens (2). Analysis of the various constituents of GAG namely, uronic acid, hexosamine (Galactosamine and Glucosamine) and sulphate was carried out (3-6).

Tissues obtained from normal rabbits aged 8-10 months maintained under the same laboratory conditions but without sodium fluoride were subjected to the same treatment as controls.

Characterization of GAG

Material and Methods

Rabbits weighing 600 to 800 gms were fed 10 mg NaF/kg body weight daily through intragastric route up to 8 months. Fluoride-treated rabbits along with age-matched controls were killed and the iliac crest region of the pelvic girdle was dissected out. Marrow free iliac crest bone was defatted in ether-acetone mixture (1:1) and dried in acetone for further analysis. One gm of bone powder was suspended in 40 ml of digestion mixture containing 0.005 M cysteine hydrochloride and 0.2 M EDTA for simultaneous demineralization. An aqueous solution of papain (0.1 ml/40 ml of digestion mixture) was also added. The enzyme papain contained 1.7 mg of protein (10-15 units/mg protein). The GAG released after demineralization and proteolytic enzyme digestion were precipitated with CPC as described by Hjerquist and Vejlens (2). The relative amount of isomeric chondroitin sulphate was determined by the method of Saito, et al. (7). Uronic acid was determined by the method of Bitter and Muir (3). Gel filtration of GAG was carried out using sephadex G-150 in columns of 2 x 40 cm. Samples (1.0 u mole as uronic acid) were dissolved in 1 ml of 0.2 M NaCl and applied to the column. Elution was carried out with 0.2 M NaCl at a rate of 7 ml/hr at room temperature. Two ml fractions were collected and analyzed for uronic acid. The void volume of the column was 30 ml and column volume was 115 ml.

Electrophoresis of GAG was carried out on 6 cm long strips of cellulose acetate at a constant current of about 1 mA per cm. The buffer system used was pyridine-acetic acid-water in the ratio of 1:9:115 v/v at
Table 2
Chemical Analysis of CPC Precipitable GAG from Cancellous Bone of Normal and NaF Treated Rabbits

<table>
<thead>
<tr>
<th></th>
<th>Total Hexosamines Mean±S.D.</th>
<th>Galactosamines Mean±S.D.</th>
<th>Glucosamines Mean±S.D.</th>
<th>Uronic Acid Mean±S.D.</th>
<th>Sulphate Mean±S.D.</th>
<th>Molar Ratios** Uronic Acid:hexosamine</th>
<th>Sulphate Hexosamine</th>
<th>Ratios Galactosamines: Glucosamines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (3)</td>
<td>21.2±1.1</td>
<td>56.3±2.5</td>
<td>43.7±2.5</td>
<td>23.8±0.5</td>
<td>17.5±0.5</td>
<td>1.04</td>
<td>1.53</td>
<td>1.29</td>
</tr>
<tr>
<td>6 months(2)</td>
<td>23.7</td>
<td>65.0</td>
<td>35.0</td>
<td>25.4</td>
<td>28.5*</td>
<td>0.99</td>
<td>2.24</td>
<td>1.86</td>
</tr>
<tr>
<td>8 months(3)</td>
<td>23.7±1.7</td>
<td>67.3±4.2</td>
<td>32.7±4.2</td>
<td>24.9±1.6</td>
<td>28.5*±1.3</td>
<td>0.97</td>
<td>2.24</td>
<td>2.06</td>
</tr>
<tr>
<td>10 months(3)</td>
<td>23.1±1.0</td>
<td>65.0±4.4</td>
<td>35.0±4.4</td>
<td>23.9±1.2</td>
<td>28.8*±0.8</td>
<td>0.96</td>
<td>2.32</td>
<td>1.86</td>
</tr>
</tbody>
</table>

* Significant at P <0.0005. ** Molar ratios are based on hexosamine = 1.0. Data expressed as mg% of dry defatted bone for CPC precipitable GAG. Data expressed as mg% of dry CPC precipitable GAG for total hexosamine, uronic acid and sulphate. Data expressed as % of total hexosamines for galactosamine and glucosamine. The number of experiments is indicated in parenthesis. ±S.D. = standard deviation.

Table 3
Chemical Analysis of CPC Precipitable GAG from Cortical Bone of Normal and NaF Treated Rabbits

<table>
<thead>
<tr>
<th></th>
<th>Total Hexosamines Mean±S.D.</th>
<th>Galactosamines Mean±S.D.</th>
<th>Glucosamines Mean±S.D.</th>
<th>Uronic Acid Mean±S.D.</th>
<th>Sulphate Mean±S.D.</th>
<th>Molar Ratios** Uronic Acid:hexosamine</th>
<th>Sulphate Hexosamine</th>
<th>Ratios Galactosamines: Glucosamines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (3)</td>
<td>20.8±0.7</td>
<td>57.7±1.5</td>
<td>42.3±1.5</td>
<td>22.8±0.6</td>
<td>15.6±0.5</td>
<td>1.01</td>
<td>1.39</td>
<td>1.36</td>
</tr>
<tr>
<td>6 months(3)</td>
<td>27.9±0.4</td>
<td>64.0±4.0</td>
<td>36.0±4.0</td>
<td>29.5±1.2</td>
<td>27.0*±1.0</td>
<td>0.98</td>
<td>1.79</td>
<td>1.78</td>
</tr>
<tr>
<td>8 months(3)</td>
<td>25.9±0.5</td>
<td>66.0±3.5</td>
<td>34.0±3.5</td>
<td>26.2±0.4</td>
<td>26.3*±0.6</td>
<td>0.95</td>
<td>1.91</td>
<td>1.94</td>
</tr>
<tr>
<td>10 months(3)</td>
<td>21.7±2.9</td>
<td>59.3±1.5</td>
<td>40.7±1.5</td>
<td>25.7±1.5</td>
<td>28.0*±1.0</td>
<td>1.09</td>
<td>2.40</td>
<td>1.46</td>
</tr>
</tbody>
</table>

* Significant at P <0.0005. ** Molar ratios are based on hexosamine = 1.0. Data expressed as mg% of dry defatted bone for CPC precipitable GAG. Data expressed as mg% of dry CPC precipitable GAG for total hexosamine, uronic acid and sulphate. Data expressed as % of total hexosamines for galactosamine and glucosamine. The number of experiments is indicated in parenthesis, ±S.D. = standard deviation.
pH 3.5. The strips were stained according to the method of Seno et al. (8) with 0.5% Alcian blue in 3% acetic acid.

Results

The rabbits obtained on CPC precipitable GAG and their chemical composition in both cortical and cancellous bones are reported in Tables 2 and 3. It is evident from the data that among the various constituents of GAG analyzed, the SO₄ content increased significantly both in cortical and cancellous bone. This may be due to increased rate of sulphation, or to increased sulphated GAG content.

The amount of GAG isolated from the iliac crest, the relative amounts of isomeric chondroitin sulphate and hyaluronic acid obtained are reported in Table 4. It is evident from the table that the GAG content of the fluorosed bone is enhanced to twice that of the control. The results on isomeric chondroitin sulphate reveal the presence of chondroitin sulphate A, chondroitin sulphate C and hyaluronic acid in control whereas, in the ex-

<table>
<thead>
<tr>
<th>Table 4</th>
<th>CPC Precipitable GAG and Chondroitin Sulphate Isomers in Control and NaF Treated Iliac Crest Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>CPC-precipitable GAG*</td>
<td>3.53</td>
</tr>
<tr>
<td>Chondroitin Sulphate A</td>
<td>68</td>
</tr>
<tr>
<td>Chondroitin Sulphate B (Dermatan Sulphate)</td>
<td>-</td>
</tr>
<tr>
<td>Chondroitin Sulphate C</td>
<td>28</td>
</tr>
<tr>
<td>Hyaluronic Acid</td>
<td>4</td>
</tr>
</tbody>
</table>

*Data expressed as mg% of dry defatted bone. Data expressed as the % of the total unsaturated disaccharides formed by the action of chondroitinase.

Experimental samples, the chondroitin sulphate reveals, in addition to the 3 constituents of the control, a fraction of chondroitin sulphate B as well. The occurrence of chondroitin sulphate B (Dermatan sulphate) in fluorosed iliac crest was confirmed by Gel filtration and electrophoresis (Fig. 4-6). Characterizations of the isomers of chondroitin sulphate were carried out by Gel filtration of the samples before and after treatment with chondroitinase ABC and chondroitinase AC. Both control and fluorosed samples of GAG prior to enzyme digestion eluted near the void volume and

Volume 15 No. 4
October 1982
the unsaturated disaccharides produced by the action of chondroitinase ABC eluted between fraction nos. 45 to 55. The controls digested with chondroitinase AC also eluted between fraction nos. 45 to 58 whereas in
fluorosed samples an additional small peak between fraction nos. 15 and 25 in addition to the sharp peak between 45 to 58 was obtained. The small peak near void volume after chondroitinase AC digestion represents the dermatan sulphate which is not digested by chondroitinase AC. The presence of chondroitinase AC resistant material revealed by electrophoresis also supports the presence of dermatan sulphate in fluorosed samples. The presence of dermatan sulphate may possibly be one of the reasons that the newly formed bone remains unmineralized during fluoride treatment.

Acknowledgement

One of the authors (AKS) is grateful to the Department of Environment (Government of India) and the International Development Research Centre, Canada, for grants-in-aid.

Bibliography

FLUORIDE BRIEF

This investigation demonstrates that intraperitoneal injections of NaF (15 mg F/kg) results in hyperglycemia, inhibition of glycolysis, and an increase in tissue cAMP concentrations. Sodium fluoride significantly increases the cAMP concentration in liver, submaxillary gland, lung, heart, and kidney within 60 minutes following the injection.

ON THE SIGNIFICANCE OF SIALIC ACID AND GLYCOSAMINOGLYCANS
IN THE SERUM OF FLUOROSED HUMAN SUBJECTS

by

A.K. Susheela and Mohan Jha
New Delhi, India

SUMMARY: The levels of sialic acid and glycosaminoglycans (GAG) have been explored in the serum of fluorosed human subjects. The changes observed in the level of these chemical constituents in the serum possibly reflect the changes occurring in cancellous bone, cortical bone and in other tissues due to fluoride ingestion. The sialic acid content versus GAG revealed a 50% reduction in serum from fluorosed subjects. The possibility of developing a sensitive prognostic test for fluorosis is discussed.

Introduction

GAG and glycoproteins form an integral part of the organic matrix of bone which is constituted predominantly of collagen fibers (Fig. 1).

Figure 1
Collagen Fibrils and Fiber Constituting Bone Matrix

From the Fluorosis Research Laboratory, Dept. of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Presented at the 12th I.S.F.R. Conference, May 16-18, 1982, St. Petersburg Beach, Florida.
At the 12th International Conference of Fluoride Research a detailed analysis of GAG and its status due to fluoride ingestion in both cancellous and cortical bone of rabbit was reported (1). The authors have also investigated one of the pathological lesions that occurs in the trabeculae of cancellous bone and have evaluated the extent of accumulation of GAG in those sites, both by quantitative and qualitative methods (2-4).

Besides GAG, the glycoprotein profile especially that of sialic acid (N-acetyl-neuraminic acid) both in cancellous and cortical bone have also been investigated. According to the authors (5) sialic acid, the only parameter among the various parameters investigated, is present in the same amount in both cancellous and cortical bone. However, the response of sialic acid content to fluoride ingestion differs significantly between cancellous and cortical bones; it is significantly enhanced in cancellous bone and decreased in cortical bone. The changes observed in GAG and glycoprotein content in tissues of rabbit have led the investigators to explore the status of these constituents in the sera of both rabbits and human subjects afflicted with fluorosis. The present report provides the data on GAG and sialic acid in the sera and elucidates the significance of the study.

Material and Methods

Normal and fluorosed human sera were collected from patients of endemic regions of India. Moreover, rabbit sera both from normal and from those which have been fed daily 10 mg NaF/kg body weight for 8 months, have also been collected and investigated.

Estimation of GAG in Sera: GAG in human and rabbit sera were estimated according to the method of Gold (6). To a known volume of serum (0.2 ml), 1.2 ml of Alcian Blue reagent* was added and after 10 min. optical density was measured at 488 nm. Chondroitin sulphate was used as the standard. Results are expressed as mg/100 ml of serum.

Sialic Acid Estimation: Sialic acid in sera of human and rabbit were estimated according to the method of Winzler (7). To 0.2 ml of serum 4.8 ml of 5% trichloracetic acid was added and placed in a boiling water bath for 15 minutes. The samples were centrifuged at 2000 rpm for 10 min. Aliquot of the supernatant was used for color development with diphenylamine (DPA) reagent**. Correction for nonspecific color development was applied. Optical density was taken at 530 nm. Results are expressed as mg/100 ml sera.

Results

The results on sialic acid and GAG contents of rabbits and human sera of both normal and fluorosed subjects are given in Table 1. It is ob-

* Alcian Blue reagent was prepared in 0.5 M sodium acetate to produce a final dye concentration 1.4 mg/ml.

** 1 gm of diphenylamine dissolved in glacial acetic acid and concentrated sulfuric acid mixed in the ratio of 9:1.
vious from the data that the sialic acid content decreased whereas GAG increased significantly due to fluoride toxicity. In the ratio of sialic acid versus GAG, fluorosed sera were reduced more than 50%. The results on human sera resemble that of rabbit sera.

Table 1
Serum Sialic Acid and GAG Content of Normal and Fluorosed Human Subjects and Rabbits

<table>
<thead>
<tr>
<th></th>
<th>Sialic Acid (SA)</th>
<th>Glycosaminoglycans (GAG)</th>
<th>SA/GAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal(5)</td>
<td>61.97±1.89</td>
<td>6.98±1.21</td>
<td>10.19</td>
</tr>
<tr>
<td>Fluorosed(5)</td>
<td>42.71±4.78*</td>
<td>13.27±1.57*</td>
<td>3.22</td>
</tr>
<tr>
<td>Normal(9)</td>
<td>61.09±2.72</td>
<td>9.45±0.53</td>
<td>6.47</td>
</tr>
<tr>
<td>Fluorosed(9)</td>
<td>45.39±2.68**</td>
<td>12.20±1.51**</td>
<td>3.73</td>
</tr>
</tbody>
</table>

Data expressed as mg/100 ml of serum. Numbers in parenthesis indicate the number of experiments carried out. * P <0.05; ** P <0.01.

Studies on the serum of fluorosed patients and of fluorosed rabbits have clearly shown that the sialic acid and GAG contents are altered. Sialic acid and its status in serum as a result of changes occurring in cancellous and cortical bone are of particular interest. The sialic acid content reveals a significant reduction in circulating levels after fluoride ingestion which is true even in sera of fluorosed humans. This observation is also consistent with the results reported for other protein-bound carbohydrates such as hexosamine and fucose in fluoride poisoning (8,9).

As the ratio of sialic acid content versus GAG revealed a 50% reduction in sera of fluorosed humans, it appears that this test could be employed as a sensitive prognostic test for fluorosis.

Acknowledgement

One of the authors (AKS) wishes to acknowledge grants-in-aid from the Department of Environment (Government of India) and the International Development Research Centre, Canada.

Bibliography

ADENYL CYCLASE ACTIVITY AND CYCLIC AMP LEVELS FOLLOWING F INGESTION IN RABBITS AND HUMAN SUBJECTS

by

M. Singh, and A.K. Susheela
New Delhi, India

SUMMARY: Fluoride is known to activate adenyl cyclase in vitro and in intact cells. The present report describes the effect of fluoride on tissue adenyl cyclase activity and cyclic AMP levels in vivo.

The adenyl cyclase activity increased significantly in bone, liver and kidney following ingestion of 10 mg fluoride per kg body weight. The increased activity paralleled elevated tissue fluoride levels. Among the various tissues investigated, bone tissue showed the highest increase in activity which approximated 193%. Further, the plasma cyclic AMP levels increased by 45% and 114% in animals given fluoride for 6 and 12 months respectively. In view of the above findings, cyclic AMP levels have been investigated in various tissues of the rabbit as well as urine and plasma of human subjects afflicted with fluorosis. The significance of the data with respect to pathological changes occurring in fluorosis is discussed.

From the Fluorosis Research Laboratory, Dept. of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Presented at the 12th I.S.P.R. Conference, May 16-18, 1982, St. Petersburg Beach, Florida.
Introduction

While exploring the derangement in collagenous and noncollagenous constituents in fluoride toxicity and fluorosis (1,2), the possibility that the adenylyl cyclase-cyclic AMP system plays a major role in collagen metabolism and calcification has been explored. It is established that fluoride activates adenylyl cyclase in broken cell preparations and in intact liver cells (3,4). However, the effect of fluoride on the activity of adenylyl cyclase in vivo has not been investigated. Adenylyl cyclase is known to catalyze the conversion of ATP to cyclic AMP (cAMP) which is a "second messenger" of numerous hormones and an important metabolic regulator (5). An increase in the cellular concentration of cyclic AMP is known to alter a number of metabolic processes namely, glycogenolysis, muscle glucoseogenesis, plasma glucose and steroidogenesis (5). This report deals with the effect of fluoride ingestion on adenylyl cyclase activity and cAMP levels in various tissues of the rabbit and of fluorosed human subjects as indicated below:

1. Adenylyl cyclase activity in calcified and noncalcified tissues of rabbits.
2. a: Cyclic AMP levels in calcified and noncalcified tissues and plasma of rabbits.
 b: Cyclic AMP levels in plasma of patients afflicted with fluorosis.

SECTION I - ADENYL CYCLASE ACTIVITY FOLLOWING FLUORIDE INGESTION (6):

Eight female albino rabbits, weighing 880-1100 g each, were divided into groups of 4 and fed a balanced diet obtained from Hindustan Lever (Bombay). The animals in the first group were incubated daily with 10 mg NaF/kg body weight (one dose) for 6 months whereas those in the second group served as controls. After treatment with sodium fluoride, the animals were sacrificed, bone (cortical), skeletal muscle (quadriceps), liver and kidney were removed and analyzed for adenylyl cyclase activity.

Adenylyl Cyclase Activity: Enzyme activity in whole homogenate was assayed by the method of Krishna et al. (7). The incubation medium contained Tris-HCl buffer pH 7.5 (4 x 10^{-2}M), MgSO_{4}, (3.3 x 10^{-3}M) theophylline (10^{-2}M), ^{14}C ATP (sp act. mcL/m mol; 1-2 x 10^{-3}M) and tissue (5 mg) in final volume of 0.3 ml. After incubation at 37°C for 15 minutes, unlabelled cAMP (0.5 ml of 5 mg/ml) was added to each tube and these were then plunged into boiling water for 3 minutes. The tubes were cooled, centrifuged at 3000 rpm for 5 min. and the supernatant was passed through a column of aluminum oxide (almina) to separate cAMP by the method of Ramachandran (8).

The radioactivity of the fractions containing cAMP was counted in a Packard Tricarb Liquid Scintillation Spectrometer (Model 3200) using a mixture of PPO and POPOP in toluene as the scintillation fluid. Efficiency of the counter was determined using automatic standardization procedure. Total protein was determined by the method of Lowry et al. (9) using bovine serum albumin as the standard. Enzyme activity is expressed as the amount of cAMP recovered/mg protein/15 min at 37°C.
Results

The adenyl cyclase activity of bone, skeletal muscle, liver and kidney treated with fluoride is reported in Table 1. Following fluoride ingestion, enzyme activity was significantly increased in bone, liver and kidney, whereas it remained unaltered in skeletal muscle. The increase in adenyl cyclase activity was highest in calcified tissue (bone).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Control Mean±S.D.</th>
<th>F⁻ Treated Mean±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcified Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortical bone</td>
<td>30.0±7.2</td>
<td>88.0±25.0*</td>
</tr>
<tr>
<td>Noncalcified Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>27.8±2.5</td>
<td>28.7±4.0</td>
</tr>
<tr>
<td>Liver</td>
<td>14.1±2.6</td>
<td>27.8±5.2*</td>
</tr>
<tr>
<td>Kidney</td>
<td>14.2±2.9</td>
<td>25.6±3.6*</td>
</tr>
</tbody>
</table>

* Significant difference (P < 0.005)
S.D. = Standard deviation

SECTION II - CYCLIC AMP LEVELS FOLLOWING FLUORIDE INGESTION:

Material and Methods

Ten female albino rabbits weighing 800-1050 g each, divided into two groups (5 each) were fed a balanced diet obtained from Hindustan Lever (Bombay). The animals in the first group were incubated with 10 mg NaF/kg body weight daily (one dose) for six months, those in the second group served as controls. After the treatment with NaF, the animals were sacrificed under ether anesthesia and blood was drawn from the heart. Besides cancellous bone (iliac crest region of the pelvic girdle), cortical bone (shaft of the femur), skeletal muscle (quadriceps), liver and kidney were also dissected out and processed as follows for assay of cyclic AMP.

1) Blood was drawn into test tubes containing 100 ul of 0.5 M EDTA (pH 7.7) per 10 ml blood which acted as both anticoagulant and phosphodiesterase inhibitor. Samples were centrifuged immediately at room tem-
perature and plasma separated and stored until used. The plasma samples were assayed for cyclic AMP levels by the method of Tovey et al. (10).

2) Noncalcified Tissues: Samples of fresh tissue were homogenized at a concentration of 100 mg/ml in 0.1 M HCl using a polytron homogenizer. The homogenate was heated at 100°C for 2 min. After cooling the suspension was centrifuged, the supernatant taken and adjusted to a pH 7.5 with 1 M NaOH, after which it was further diluted with assay buffer. The cyclic AMP levels were determined by Tovey et al. (10), using cyclic AMP Assay Kit supplied by Amersham Radiochemicals (U.K.).

3) Calcified Tissues: The method of Shanfeld et al. (11) was used for assay of cAMP in bone tissue. Bone samples were split with a chisel and residual soft tissues were removed. Thus, bone fragments of 400 to 500 mg (wet weight) which were obtained were pulverized in a heavy porcelain mortar. Frozen pellets of water (1-10 ml/100 mg of bone weight) were then introduced into the mortar and thoroughly triturated. The powdered mixture was transferred into a thick walled test tube, immediately immersed into a hot salt bath (125°C.), brought to a boil within 30-60 seconds and boiled for 3 minutes. The mixture was then cooled and brought to -40°C. in an ultra low refrigerator and homogenized by crushing in a mortar and pestle. The homogenate was reconstituted to original volume and then centrifuged at 4000 g for 15 minutes. An aliquot was taken and cAMP assayed by the method of Tovey et al. (10) using cyclic AMP Assay Kit supplied by Amersham Radiochemicals. The protein content was estimated by the method of Lowry et al. (9). The concentration of cyclic AMP in tissues was expressed as picomole cAMP/mg protein and in plasma as picomol/ml plasma.

The significance of the data was evaluated by Student's "t" test.

Results

1) cAMP Levels in Calcified and Noncalcified Rabbit Tissues: The results obtained on cyclic AMP levels are shown in Table 2. It is evident from the table that all tissues showed elevated cyclic AMP levels following fluoride ingestion. In particular, the increased cyclic AMP levels were very pronounced in calcified tissues; the increase measured 96% in cortical bone and 134% in cancellous bone. Among the noncalcified tissues, liver showed the maximum percentage increase in cAMP levels followed by kidney, whereas muscle showed the least change.

2) cAMP Concentration in Plasma Samples of Fluorosed Human Subjects and Rabbit: The data obtained on cyclic AMP levels of normal and fluorosed patients is given in Table 3. Of three patients analyzed for plasma cyclic AMP levels only two showed an increase in cyclic AMP levels as compared to the mean of normal subjects. The increase in F1 was appreciable and measured about 46% whereas the increase in F3 was marginal and only approximated 30%.

In the animal models the plasma cyclic AMP levels increased significantly (45%) following fluoride ingestion.
Table 2

Effect of F⁻ on Rabbit Tissue and Plasma cAMP Level

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Control Mean S.D.</th>
<th>F⁻ Treated Mean S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcified Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancellous bone</td>
<td>4.8±0.6</td>
<td>11.2±1.6</td>
</tr>
<tr>
<td>Cortical bone</td>
<td>3.2±0.5</td>
<td>6.3±0.9</td>
</tr>
<tr>
<td>Noncalcified Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>15.7±2</td>
<td>28.6±3.1</td>
</tr>
<tr>
<td>Kidney</td>
<td>10.2±1.2</td>
<td>16.4±1.9</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>4.1±0.6</td>
<td>6.4±0.8</td>
</tr>
<tr>
<td>Plasma</td>
<td>33.0±5</td>
<td>48.0±6.2</td>
</tr>
</tbody>
</table>

Values are significant at P <0.005

Table 3

Plasma Cyclic AMP Levels in Normal and Fluorotic Human Subjects

<table>
<thead>
<tr>
<th>Code No.</th>
<th>cAMP Level (p mol/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>N₁ 27</td>
</tr>
<tr>
<td>N₂ 23</td>
<td>Mean = 2:</td>
</tr>
<tr>
<td>N₃ 17</td>
<td></td>
</tr>
<tr>
<td>Fluorosed</td>
<td>F₁ 32</td>
</tr>
<tr>
<td>F₂ 23</td>
<td></td>
</tr>
<tr>
<td>F₃ 29</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Although the number of human subjects investigated is less than in animals, the results obtained clearly indicate that tissue levels of cyclic AMP and adenyl cyclase activity increased after prolonged ingestion of fluoride. The results also reveal a correlation between the increased cyclic AMP levels in tissues and increased plasma cyclic AMP levels.

It can be seen from the data on fluoride levels (presented earlier) that serum and tissue fluoride levels were significantly elevated; calcified tissue showed the highest percentage increase in fluoride content, skeletal muscle the lowest. Bone revealed the highest percentage increase in adenyl cyclase activity and cAMP levels, whereas muscle showed a negligible change in adenyl cyclase activity and a moderate increase in cyclic AMP levels. However, the increased fluoride content of liver and kidney was higher than that of muscle, and enzyme activity and cAMP was significantly elevated in these tissues.

It is evident from these studies that increased cyclic AMP levels are due to the direct stimulatory effect of fluoride on adenyl cyclase activity. In the case of skeletal muscle, which showed increased cAMP levels but not increased adenyl cyclase, we believe that fluoride may inhibit 3',5' - cyclic AMP phosphodiesterase - an enzyme which catabolizes cAMP (converts cAMP to AMP). In fact, various kinds of phosphodiesterases are known to be inhibited by low concentrations of fluoride in vitro (12).

Although elevated fluoride content in tissues paralleled increased adenyl cyclase activity and cyclic AMP levels, it remains to be demon-
strated whether the activation is due solely to the direct effect of fluoride on adenylyl cyclase or whether there are other contributory factors.

Excessive fluoride ingestion is known to result in secondary hyperparathyroidism leading to increased levels of parathyroid hormone in plasma (13, 14). This polypeptide hormone mediates its action by activating adenylyl cyclase activity thus stimulating cAMP production in kidney and bone (15, 16). Further, this hormone is known to activate adenylyl cyclase in liver also (17). It is, therefore, possible that the increased fluoride content of tissues and enhanced hormone levels might account for the increase in adenylyl cyclase activity which in turn explains increased cAMP levels following fluoride ingestion.

Acknowledgement

One of the authors (AKS) wishes to acknowledge grants-in-aid to the Department of Environment (Government of India) and to the International Development Research Centre, Canada.

Bibliography

15. Aurbach, G.D., and Chase, L.R.: Cyclic 3',5' -
ULTRASTRUCTURAL OBSERVATIONS ON THE EFFECTS OF FLUORIDE INGESTION ON THE PARATHYROID GLAND OF THE RAT

by

L.J. Ream
Dayton, Ohio

SUMMARY: The parathyroid glands of rats given distilled water, to which 150 ppm fluoride was added, for 10 weeks contain abundant lamellar arrays of rough endoplasmic reticulum and multiple dilated Golgi complexes. Secretory granules are released within cytoplasmic projections and aggregations of glycogen granules are seen within the chief cell cytoplasm as well as within enlarged intercellular spaces. Fluoride ingestion appears to result in increased functional activity of the rat parathyroid gland.

Introduction

The parathyroid glands of the rat consist of one parenchymal cell type, the chief cell (1-5). Within this single cell category, light and dark cells have been described as representing inactive and active stages of secretory activity respectively (6-8). The structure of the rat parathyroid gland (6) is similar to that of other species (9, 10) except for a sparse amount of glycogen and the presence of few secretory granules(11).

The ingestion of waterborne fluoride has been reported to affect calcium homeostasis in both humans and animals. However, the exact mechanism leading to the involvement of the parathyroid glands in skeletal fluorosis is unclear. Although much evidence suggests that fluoride ingestion causes hyperactivity of the parathyroid glands in humans (12-14) and in some animals (15,16), contradictory findings are common, particularly when the rat is used as the experimental animal. The objective of this study was to describe the morphological appearance of the rat parathyroid gland following short-term fluoride ingestion.

From the Dept. of Anatomy, Wright State University, School of Medicine, Dayton, Ohio. Presented at the 12th I.S.F.R. Conference, May 16-18, 1982, St. Petersburg Beach, Florida.
Materials and Methods

Young adult male Sprague-Dawley rats were divided into control and experimental groups of 12 animals each. Both groups were given distilled water ad libitum, to which 150 ppm fluoride as sodium fluoride was added for the experimental group. At the end of the 10-week experimental period, all animals were anesthetized with ether and perfused with Karnovsky's fixative (17) buffered to pH 7.3. The parathyroid glands were then freed from the surrounding thyroid tissue, placed in fresh fixative for 2 hours, and rinsed in two changes of phosphate buffer at pH 7.3 (18). After post-fixation for 1 hour in buffered 2% osmium tetroxide, the tissues were dehydrated in increasing concentrations of ethyl alcohol, followed by propylene oxide, and embedded in Epon 812 (19). Thin sections were stained with 3% aqueous uranyl acetate, poststained with lead citrate (20) and examined with a Zeiss EM-9 electron microscope.

Results

In contrast to those of the control rats, the predominant cell type in the parathyroid glands of rats given fluoride in the drinking water is the dark chief cell. The organelles concerned with protein synthesis and packaging of the secretory product are abundant and more developed than those in the dark cells of control rat parathyroids. The rough endoplasmic reticulum is increased and aggregated into large lamellar arrays. The Golgi complexes are also enlarged and consist of dilated cisternae(Fig.1). Moreover, the Golgi complexes often appear as multiple complexes in several parts of the cell.

Figure 1

Dark Chief Cell Containing Extensive Lamellar Array of Rough Endoplasmic Reticulum (RER)

and a Large Golgi Complex (G) (× 27,000)
Many dark cells form complex interdigitations with adjacent cells while enlarged intercellular spaces are frequently seen between other dark cells. Large aggregations of glycogen granules are often seen within the widened spaces as well as within spaces subjacent to perivascular spaces (Fig. 2). In addition to the extracellular accumulation of glycogen, many dark cells contain large numbers of glycogen granules randomly scattered throughout the cytoplasm (Fig. 3).

Numerous secretory granules can be seen in various stages of release from the chief cells. At the perivascular surface of the cell, the secretory granule presses against the plasma membrane and causes the surface to bulge outward (Fig. 4). The connecting stalk of the cytoplasmic projection narrows and finally becomes detached from the chief cell by pinching off as a result of plasma membrane rupture and refusion (Fig. 5).

Discussion

It has been shown that there is direct feedback control by calcium (21) of parathyroid hormone. Experimental studies on rat parathyroid glands have demonstrated ultrastructural evidence of parathyroid stimulation and increased cellular activity under conditions of low serum calcium concent-

Scattered glycogen granules (Gly) and small clumps of glycogen (arrowheads) within dark chief cell. Note secretory granule (SG) within cytoplasmic bleb (x 27,000).
Cytoplasmic projection containing secretory granule (SG) projecting from chief cell into perivascular space (PS) adjacent to capillary (CAP) (x 27,000).

Cytoplasmic projection containing secretory granule (SG) lying free in perivascular space (PS) adjacent to capillary (CAP) (x 27,000).

These studies show that chronic stimulation leads to an increase in plasma membrane tortuosity, multiple cisternae of rough endoplasmic reticulum and large Golgi complexes. The structure is similar to that described in the parathyroid glands of rats following nephrectomy (1,2,22) or given a diet deficient in calcium (23), as well as in sheep (16) and rabbits (24) following fluoride ingestion.

The present study shows that the ingestion of 150 ppm fluoride in the drinking water for 10 weeks also appears to result in increased cellular activity in the parathyroid glands of the rat. Rat parathyroid cells undergo asynchronous cyclic changes in protein synthesis and hormone secretion (6) similar to those described in man (9). However, as a result of fluoride ingestion, there is a change in the predominantly light chief cell population in control rats to a predominantly dark chief cell population in fluoride-treated rats. The dark chief cells are considered to represent those cells in the stage of the secretory cycle involved in the synthesis of parathyroid hormone (25). Rough endoplasmic reticulum, aggregated into parallel arrays and stacks, and large Golgi complexes associated with vacuoles and vesicles, such as that seen in the present study, are all associated with increased parathyroid hormone synthesis (11,26,27). Moreover, these morphological characteristics of the dark chief cells in the fluoride-treated rat are never seen in the normal rat parathyroid gland, but are similar to the dark chief cells of the human parathyroid gland (9).

The widened intercellular spaces between adjacent chief cells in the fluoride-treated rats appear to be the result of reduced cytoplasmic area. A similar increase in intercellular spaces has been reported in young cats with experimental hyperparathyroidism (28). The marked increase in tortuosity of the plasma membranes and in the amount of interdigitation with
the plasma membranes of adjacent cells has been previously associated with hyperactivity of the rat parathyroid gland (29).

The parathyroid gland of the normal rat contains relatively small amounts of glycogen as compared to that of other species (11). In the normal rat, there is an inverse relationship between glycogen deposits and parathyroid secretory activity, where inactive chief cells contain abundant glycogen, and active chief cells sparse glycogen (6). This is in contrast to the present study and to studies of hyperparathyroidism in man (30) wherein glycogen increases with secretory activity. Not only is the amount of glycogen within the chief cells in control rats less than in fluoride-treated rats, but glycogen granules are never seen in the extracellular compartment of the normal rat parathyroid.

The increased amount of glycogen in the fluoride-treated rat suggests a closer correlation between glycogen accumulation and increased secretory activity than has been previously reported in the rat (30) and that an inverse relationship between the two is not found with hyperactivity. Consequently, secretory cycles associated with hyperparathyroidism in the rat closely parallel those reported in man.

It is not clear whether this abundance of glycogen is significant relative to the production and storage of energy for increased hormone synthesis, or whether it is the result of abnormal control mechanisms of cellular metabolism associated with overstimulation of these cells.

A number of studies have suggested that hormone secretion in avian (31), bovine (25) and human (32) parathyroid glands occurs by exocytosis. An alternative apocrine-like mechanism has been suggested for the extrusion of secretory material into the perivascular space in normal (33) and hyperactive parathyroid glands of pigs (34). The present study readily shows that secretory granules can also be released from the chief cells within cytoplasmic projections. This alternative mechanism may be an expression of the hyperactivity of the gland in response to fluoride administration. Since apocrine-like secretions are observed in both the hyperactive as well as the normal parathyroid of pigs, this form of hormone secretion may also occur in the normal rat parathyroid.

The results of the present study suggest that the ingestion of high doses of fluoride in the rat induces a type of secondary hyperparathyroidism wherein increased protein synthesis occurs in glycogen-rich chief cells. Although no evidence of either hyperplasia or hypertrophy was found, the alterations in morphology of the stimulated parathyroid glands are similar to those previously seen in other fluoride-treated animals.

Bibliography

4. Mazzocchi, G., Meneghelli, V.,

FLUORIDE

COMPARATIVE METABOLIC STUDIES IN FLUORIDE-TREATED AND STREPTOZOTOCIN-DIABETIC RATS

by

I. Boros, P. Keszler, Zs. Toth, and T. Zelles
Budapest, Hungary

SUMMARY: Rats consuming distilled water containing fluoride as NaF in various concentrations (0, 25, 50 ppm) were treated with streptozotocin (65 mg/kg body weight), i.p. 3 days prior to being sacrificed. Increased and longterm fluoride intake promoted diabetic hyperglycemia. Serum alkaline phosphatase activity increased in all diabetic groups as well as non-diabetic groups consuming 50 ppm. Weight loss of the submandibular and parotid glands was most apparent in the diabetic group treated with 50 ppm fluoride. In both fluoride consuming diabetic groups, the plasma ionized fluoride level was about one-half that of the fluoride consuming non-diabetic controls.

Introduction

Many studies have been carried out on the adverse effects of high and

From the Research Group of Oral Biology and Clinic of Conservative Dentistry, Semmelweis University Medical School, Budapest, Hungary. Presented at the 11th I.S.F.R. Conference, Apr. 8-10, 1981, Dresden, GDR.
chronic fluoride intake on bones and teeth (1-5). Other tissues, however, as possible affected sites, and their relation with some metabolic disorders have received less attention. Szymanska et al. (6) reported an increased frequency in abnormalities of blood glucose curves and an enhanced activity of the enzyme phosphohexoseisomerase in the sera of humans exposed to fluoride for a prolonged period.

During the period from 1965 to 1975, while the use of fluoride for both prophylactic and therapeutic purposes was increasing (7,8), the incidence of diabetes increased by 6%/year (9). The present study was designed to examine the effects of longterm fluoride loading on experimental diabetes and to investigate the fluoride metabolism in diabetic conditions.

Materials and Methods

Female Wistar rats whose body weights averaged 220-250 grams at the beginning of the experiment were used. Animals were kept in a temperature-controlled 23°C room, with a fixed 12 h artificial light cycle (8:00 a.m.-8:00 p.m.). They were fed a standard laboratory chow (LATI, Hungary) ad libitum. The rats, which were divided into three groups of ten each, were treated as follows: The control group (C) was offered distilled, deionized water for four weeks. The groups F1 and F2 consumed sodium fluoride in deionized water at concentrations of 25 and 50 ppm, respectively. Three days before the end of the experimental period, five rats from each group (groups C, F1, and F2) received streptozotocin (SERVA, Heidelberg, West Germany) in a dose of 65 mg/kg b.w.i.p., dissolved in isotonic saline set to pH 4.2 with citric acid. On day 28, after overnight starvation with free access to water, rats were sacrificed under nembutal anesthesia. Blood samples were collected from the femoral vein into centrifuge tubes. After deproteinization and centrifugation at 4°C, glucose was determined by the glucose oxidase method (Boehringer kit, Mannheim, West Germany). The serum alkaline phosphatase (E.C. 3.1.1-3.1.) activity was estimated at 25°C by a colorimetric method using sodium p-nitrophenylphosphate as substrate (10). The plasma ionized fluoride level was determined at 37°C using fluoride sensitive microcapillary electrode (RADELKIS OP 262, Hungary). All data were expressed as mean ± SD and significance was calculated by Student's t-test.

Results

Under the experimental conditions no considerable differences were seen in the average body weights of the rats either in the fluoride-treated or in the diabetic groups (data not shown). Data presented in Fig. 1 show that, on the third day after streptozotocin administration, all groups treated with the drug developed a high blood glucose level. It was also observed that fluoride treatment alone did not result in any changes of blood glucose concentration. However, mean blood glucose level in the diabetic group that consumed 50 ppm fluoride in water was extremely high.

The alkaline phosphatase activity in the serum is illustrated in Fig. 2. In the nondiabetic F1 group, the enzyme activity did not differ from the control but activity was enhanced in the fluoride consuming F2 group. Streptozotocin administration produced a significant increase in the enzyme activity in all of the diabetic groups; no essential differences were observed between the diabetic groups with or without fluoride loading.
Studies on Diabetic Rats

Figure 1
Blood Glucose Concentrations Following F^- in Drinking Water

Figure 2
Serum Alkaline Phosphatase Activity Following F^- in Drinking Water

Groups: $C =$ control, $F_1 = 25$ ppm F^-, $F_2 = 50$ ppm F^-, $C_D =$ control-diabetic, $F_{D1} = 25$ ppm F^- and diabetic, $F_{D2} = 50$ ppm F^- and diabetic. Data are means ± SD.
Boros et al.

Figure 3
Changes in Wet Weight of Submandibular and Parotid Glands Following F⁻ in Drinking Water

![Graph showing changes in wet weight of submandibular and parotid glands.](image)

Groups: C = control, F₁ = 25 ppm F⁻, F₂ = 50 ppm F⁻, C₀ = control-diabetic, F₀1 = 25 ppm F⁻ and diabetic, F₀2 = 50 ppm F⁻ and diabetic. Data are means ± SD.

Fig. 3 illustrates wet weights of salivary glands in various groups; a reduction in the weight of the submandibular gland in group F₂ was more apparent in group F₀₂. Fluoride administration had no considerable effect on the weight of the parotid gland. In contrast to the human results, in the diabetic animals the weight of the gland was decreased and weight loss in group F₀₂ was more significant.

Animals receiving fluoride in drinking water always developed higher plasma ionic levels than those solely receiving distilled water (Fig. 4).

It should be noted that the mean of the ionic fluoride in the plasma of the diabetic animals (C₀) was practically the same as that of the untreated control (C). In the diabetic animals consuming drinking water with 25 or 50 ppm F⁻, ionic fluoride concentration in their plasma was less enhanced than in the animals of groups F₁ or F₂.

Discussion

Streptozotocin is known to produce selective necrosis of the pancreatic islet cells and diabetes (11) and it is widely used in animal experiments. The defect in carbohydrate metabolism is a significant component of fluoride toxicity. Dost et al. (12) reported that the defect in carbohydrate metabolism in rats which occurred during continuous infusion of fluoride, is the blockage of glucose entry to cells, presumably through failure of phosphorylation. It is also reported (13) that insulin should
relieve certain manifestations of fluoride intoxication. These findings call attention to the fact that fluoride loading, whether derived from medical or surgical use, or from industrial or environmental sources, has been shown to elevate in humans the serum inorganic fluoride well into the range high enough to produce a depression in glucose utilization. Therefore, it seemed worthwhile to study interrelationships that might exist between diabetes and prolonged and increased fluoride intake. The current studies were undertaken to determine whether the development of experimental diabetes and the diabetic status of rats could be influenced by long-term pretreatment of fluoride in drinking water. In addition, we were interested in determining whether or not any changes in blood glucose are related to the fluoride intake per se. Under normal circumstances in the intact non-diabetic rats, no differences were observed in the blood glucose concentrations between the control and the fluoride-treated groups, which agrees with the findings reported with regard to several fluorotic patients and animals (14). In the control-diabetic rats the blood glucose concentration averaged 13.54 ± 2.19 mmol/liter, but the hyperglycemia was more apparent (21.83 ± 6.1 mmol/liter) in the diabetic group that consumed water containing 50 ppm fluoride showing that under fluoride loading a more severe diabetes developed.

Few data are available on in vivo effects of fluoride intake on enzymatic activities. Mechanisms of inhibition by fluoride of several enzyme
systems have been reported but the fluoride concentrations used were several times higher than those present in normal body fluids. In most cases, the changes which developed were shown to be secondary to a primary effect of dietary fluoride on the pattern of food intake (15). Ferguson (16) reported that 10 ppm fluoride in drinking water for 12 weeks induced a decrease in serum alkaline phosphatase activity in rats without any changes in the activity of the enzyme in the liver or intestinal tissue. In our experiment, the activity of this enzyme in the serum of the intact but fluoride-consuming F2 group was significantly elevated compared with the control. It is suggested that the change in the enzyme activity could be associated with the toxic effect of fluoride on the liver. Iwase et al. (17) reported mild to severe degeneration in the myocardium and liver in chronic fluorosis. In the diabetic rats, the serum alkaline phosphatase activity was enhanced in all of the drug-treated groups but no difference between either CD and FD1 groups or between CD and FD2 groups was noted. These changes are due to the slight focal necrosis in the liver induced by streptozotocin 3-4 days after its injection (18).

It is well known that the salivary glands are commonly affected by endocrine dysfunction. Sialosis is the term which is used to describe the enlargement of salivary glands unaccompanied by signs of inflammation. In the majority of cases, the swelling occurs principally in the parotid gland (19). The bilateral parotid enlargement has also been described in diabetes mellitus (20) with reduced flow rate values (21). Recently, Weiss et al. (22) reported marked changes in the parotid gland of rats caused by diabetes with pronounced ultrastructural changes in the acinar and striated duct cells. The secretory granules were reduced in size and number and the acinar cells accumulated large cytoplasmic lipid droplets. The authors concluded that the normal gland function and structure may in part be insulin-dependent. The submandibular glands of mice exhibit a hormone-dependent sexual dimorphism of size and structure which is also affected by diabetes (23).

According to our results, in contrast to human findings under experimental conditions of diabetes, the enlargement of salivary glands did not occur. In the CD group, the weight of the parotid gland was decreased and a further weight loss was observed in the FD2 group. On the contrary, change in weight of the submandibular gland caused by diabetes was not pronounced but a significant decrease occurred in the FD2 group. It appears that prolonged and increased fluoride intake may aggravate the structural and functional alterations of salivary glands, characteristic of diabetes. It should be noted that 50 ppm fluoride in drinking water given to intact, non-diabetic rats also affects the submandibular gland.

Factors which might influence fluoride metabolism, i.e. fluoride intake, distribution and excretion are well known. However, the metabolism of this ion in the diabetic organism has not been investigated. It was supposed that the diabetic polydipsia and polyuria might be important factors in determining the fluoride loading of the organism. In addition, the kidney, as the major excretory organ, appears to be one of the organs showing early changes in function following treatment with high doses of fluoride. Recent reports from Reynolds et al. (24) and Whitford et al. (25)
indicate that the acid-base status of rats is an important factor influencing sensitivity to acute fluoride toxicity. There are apparent species differences in the distribution of fluoride between the ionic and bound forms in the plasma of the rat as compared with human plasma. In rats, if total fluoride increases, it is in ionic rather than bound form, the latter remains fairly constant (26). For this reason in our study the plasma ionic fluoride was estimated. An aqueous fluoride intake at a concentration of 25 or 50 ppm in drinking water to rats for 4 weeks produced an elevation of plasma levels of ionic fluoride which was more marked in the non-diabetic F1 and F2 groups than in the Fp1 or Fp2 groups. To elucidate the mechanisms responsible for this phenomenon, a continuous monitoring of the daily fluoride intake and the urinary fluoride excretion is planned in the future.

Bibliography

FLUORIDE BRIEFS

Solutions of sodium fluoride at pH 3 to 4 inactivated enteroviruses, whereas other sodium salts had little or no effect on virus infectivity. Solutions of potassium fluoride also inactivated viruses under similar conditions. Light, temperature, and the presence of organic compounds such as detergents and fecal matter did not affect inactivation of virus by 0.4 M solutions of sodium fluoride at pH 3 to 4.

The technique of the intravitreal injection of SF6 gas within the limits of the actual retinal surgery is discussed and, by means of 10 cases, demonstrated.

ABSTRACT

THE URACIL-FLUORIDE INTERACTION: AB INITIO
CALCULATIONS INCLUDING SOLVATION

by

J. Emsley, D.J. Jones, and R.E. Overill
King's College, Strand, London

The crystalline 1:1 complex between the RNA component uracil and
potassium fluoride reported by Clark and Taylor (J. Chem. Soc., Chem.
Commun., 466-468, 1981; abstr. FLUORIDE, 15:48-49, 1982) is shown by
an ab initio calculation method described previously (J. Am. Chem. Soc.,
103:24-28, 1981) to be thermodynamically stable even when hydrated.
Under such conditions the N-H-F bond energy at N-3 in uracil is estimated
to be 42 kJ/mol more stable than uracil N(3) + HF. At N-1 it is predicted
to be 7 kJ/mol less stable than N(1) + HF. Because N-3 and not
N-1 is involved in connecting uracil to adenine in RNA, the authors pro-
pose that substitution of F- for the adenine nitrogen in the normal hy-
drogen bonding pairing "could play a disruptive role towards RNA and
DNA; thymine in the latter should hydrogen bond equally as well as ura-
cil with F-".

In considering reports relating low levels of fluoride to "birth de-
fects, allergic responses, and even cancer", the authors suggest that
fluoride interference with hydrogen bonding at the NH group in uracil and
thymine "may provide the fluoride ion with a mechanism and the necessary
energy to cause fundamental biochemical changes, given the right envi-
ronment."

A.W.B.

(Reprints: Dept. of Chem., King's College, Strand, London WC2R 2LS, U.K.)

A REVIEW OF CLINICAL RESEARCH ON THE USE OF PRENATAL FLUORIDE
ADMINISTRATION FOR PREVENTION OF DENTAL CARIES

by

W.S. Driscoll

(Abstracted from Drug Metab. Dispos., 9:19-24, 1981)

The author recommends additional research on placental transfer of
fluoride and the mechanisms of its action and states that permanent teeth
are unlikely to benefit from dietary fluoride supplements. Since conclu-
sive clinical evidence that administration of dietary fluoride supple-
ments to pregnant women reduces dental caries in the teeth of offspring
is lacking, the procedure cannot be recommended at this time.

Volume 15 No. 4
October 1982

Table 5
Fluoride (µg g⁻¹ ± standard error)* in Body Tissues and Estimated Diets from the Dam Surface

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Micromys agrestis</th>
<th>Sorex araneus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur</td>
<td>554±43 (10)</td>
<td>1282±252 (7)</td>
</tr>
<tr>
<td>Pelvic Girdle</td>
<td>585±63 (9)</td>
<td>1298±245 (8)</td>
</tr>
<tr>
<td>Skull</td>
<td>517±37 (10)</td>
<td>714±120 (7) NS</td>
</tr>
<tr>
<td>Kidney</td>
<td>22.7±2.9 (13)</td>
<td>22.5±3.6 (9) NS</td>
</tr>
<tr>
<td>Liver</td>
<td>15.7±1.0 (13)</td>
<td>15.9±1.4 (9) NS</td>
</tr>
<tr>
<td>Muscle</td>
<td>41.2±7.0 (12)</td>
<td>27.6±4.3 (8) NS</td>
</tr>
</tbody>
</table>

Total body concentration 139±11 (9) 259±42 (8) *

Estimated Diet** 332 1063

* Values expressed on a dry weight basis.
* Significant (p <0.05) or NS not significant differences between species.
** Estimated Diet: M. agrestis (ground-cover vegetation); S. araneus (invertebrates) based on components of the diet and ratios described by Godfrey (11), Chitty, et al. (12) and Rudge (10).
Number of replicates in parenthesis.

FLUORIDE BRIEF

Monofluorophosphate (MFP), usually sodium-MFP, Na₂PO₃F, now widely used in dentifrices has been suggested for the treatment of osteoporosis. Its PO₃F⁻ ions are hydrolyzed to F⁻ and orthophosphate ions by phosphatases. In experiments on rats, no splitting was observed in the stomach; hydrolysis was rapid in the small intestine and in the liver, and slower in the blood. In neither rats nor humans was there any evidence of direct absorption of PO₃F⁻ into the blood. The authors state that "PO₃F⁻ ions resemble sulphate ions," that they have "little enzymatic or other toxic potential" and that "any parenteral occurrence of these ions would have little physiologic or toxicologic effect."

Waldott, G. L. 15:54-55, 94-102
2:74-75, 140-141, 192-194, 206-213; 31-3, 4-5, 47-48
109-112, 112-113, 164-166
41-4, 93-96, 102-105, 152-153
51-3, 56-57, 159-163, 169
11-14, 71-72, 123-126, 187-188
71-3, 65-68, 112-113, 174-176
220-222, 51-2, 56-60, 121-124, 178-181; 91-4, 5-8, 24-28
71-72, 123-126, 170-172; 121-4; 23-33, 45-47, 52-54, 141-144
49-51, 101-104, 105-106
111-114, 143-146; 123-124
141-144, 49-50, 94-101, 147-149
15:52-53, 109, 165-168, 169-172
Wallis, W. J. 7:69-77
Waller, H. 3:181-187
War, P. F. V. 6:184-202
Ward, R. B. 4:116-117
Warren, J. 9:163-164
Water, R. S. 1:142-148
Waters, W. E. 3:1-3; 4:30-33
Waziri, M. H. 9:18-188
Weatherell, A. 1:14-14
Webb, H. M. 6:117-118
Wegener, M. 11:181-183
Wel, P. H. 5:67-73
Weil, W. H. 14:143
Weinstein, L. H. 3:40-41
Weiss, S. 5:421
Welch, J. 7:173
Welsh, G. W. 1:172; 3:187-188
Westreicher, V. 10:187
White, D. A. 1:148
Whiteford, G. W. 5:68-99
1:180-182; 10:18-184; 14:41
Wasawski, C. 1:186-188
Watanabe, H. 1:186-188
Ward, R. B. 4:116-117
Waziri, M. H. 9:163-164
Weatherell, A. 1:14-14
Webb, H. M. 6:117-118
Wegener, M. 11:181-183
Wel, P. H. 5:67-73
Weil, W. H. 14:143
Weinstein, L. H. 3:40-41
Weiss, S. 5:421
Welch, J. 7:173
Welsh, G. W. 1:172; 3:187-188
Westreicher, V. 10:187
White, D. A. 1:148
Whiteford, G. W. 5:68-99
1:180-182; 10:18-184; 14:41
Wasawski, C. 1:186-188
Watanabe, H. 1:186-188
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrams, G. W.</td>
<td>2</td>
</tr>
<tr>
<td>Adams, E.</td>
<td>50</td>
</tr>
<tr>
<td>Adami, B.</td>
<td>43-47, 75-78</td>
</tr>
<tr>
<td>Alie, D. V.</td>
<td>106-107, 131</td>
</tr>
<tr>
<td>Altmann, H.</td>
<td>31-36</td>
</tr>
<tr>
<td>Anderson, S. R.</td>
<td>46</td>
</tr>
<tr>
<td>Andrews, S. M.</td>
<td>56-63</td>
</tr>
<tr>
<td>Assumkumar, G. E.</td>
<td>43-47</td>
</tr>
<tr>
<td>Azaruz, M.</td>
<td>43-47, 75-78</td>
</tr>
<tr>
<td>Ballantyne, D. J.</td>
<td>105</td>
</tr>
<tr>
<td>Beak, C. A.</td>
<td>54-56</td>
</tr>
<tr>
<td>Beaucamp, J. J.</td>
<td>14-20</td>
</tr>
<tr>
<td>Becker, W.</td>
<td>62</td>
</tr>
<tr>
<td>Ermali, D. S.</td>
<td>42-47, 75-78</td>
</tr>
<tr>
<td>Pietie, M.</td>
<td>43-47</td>
</tr>
<tr>
<td>Binot, B.</td>
<td>221</td>
</tr>
<tr>
<td>Riclat, M. A.</td>
<td>107-108</td>
</tr>
<tr>
<td>Boiwin, G.</td>
<td>54-56</td>
</tr>
<tr>
<td>Borcs, I.</td>
<td>50, 214-221</td>
</tr>
<tr>
<td>Bourbon, P.</td>
<td>157-161</td>
</tr>
<tr>
<td>Prow, L. R.</td>
<td>53</td>
</tr>
<tr>
<td>Busse, H.</td>
<td>221</td>
</tr>
<tr>
<td>Chadha, S.</td>
<td>105</td>
</tr>
<tr>
<td>Chandler, M. E.</td>
<td>110-118</td>
</tr>
<tr>
<td>Chimelink, M.</td>
<td>21-25</td>
</tr>
<tr>
<td>Chopin, S.</td>
<td>144-149</td>
</tr>
<tr>
<td>Clark, J. H.</td>
<td>48-49</td>
</tr>
<tr>
<td>Clark, R. A.</td>
<td>51</td>
</tr>
<tr>
<td>Compton, J. E.</td>
<td>105</td>
</tr>
<tr>
<td>Cooke, J. A.</td>
<td>56-63</td>
</tr>
<tr>
<td>Cyplik, F.</td>
<td>21-25</td>
</tr>
<tr>
<td>Dapas, O.</td>
<td>87-96</td>
</tr>
<tr>
<td>Demeurisse, C.</td>
<td>54-56</td>
</tr>
<tr>
<td>Denine, F.</td>
<td>43-47, 75-78</td>
</tr>
<tr>
<td>Deutsch, D.</td>
<td>64-69</td>
</tr>
<tr>
<td>Driscoll, W. S.</td>
<td>222</td>
</tr>
<tr>
<td>Driver, C. J.</td>
<td>97-104</td>
</tr>
<tr>
<td>Elferink, J. C. R.</td>
<td>:4-12</td>
</tr>
<tr>
<td>Elsair, J.</td>
<td>43-47, 75-78</td>
</tr>
<tr>
<td>Emsley, J.</td>
<td>222</td>
</tr>
<tr>
<td>Ericsson, Y.</td>
<td>223</td>
</tr>
<tr>
<td>Essen, P. A.</td>
<td>124-131</td>
</tr>
<tr>
<td>Eubanks, R. D.</td>
<td>221</td>
</tr>
<tr>
<td>Farrah, S. R.</td>
<td>221</td>
</tr>
<tr>
<td>Fejerskov, O.</td>
<td>106, 107, 131</td>
</tr>
<tr>
<td>Fleischer, Z.</td>
<td>21-25</td>
</tr>
<tr>
<td>Garcia, J.</td>
<td>107-108</td>
</tr>
<tr>
<td>Garre, J. P.</td>
<td>144-149</td>
</tr>
<tr>
<td>George, R.</td>
<td>70-75</td>
</tr>
<tr>
<td>Glover, B. L.</td>
<td>105</td>
</tr>
<tr>
<td>Gluzow, J. H.</td>
<td>156</td>
</tr>
<tr>
<td>Greenberg, S. R.</td>
<td>119-123</td>
</tr>
<tr>
<td>Hallgren, J. E.</td>
<td>124-131</td>
</tr>
<tr>
<td>Hamrou, S.</td>
<td>43-47, 75-78</td>
</tr>
<tr>
<td>Hanhijarvi, H.</td>
<td>35-43</td>
</tr>
<tr>
<td>Hodge, H. C.</td>
<td>49</td>
</tr>
<tr>
<td>Jagannath, B.</td>
<td>173-177</td>
</tr>
<tr>
<td>Jain, S. K.</td>
<td>173-177</td>
</tr>
<tr>
<td>Johnson, K. S.</td>
<td>56-63</td>
</tr>
<tr>
<td>Jones, D. J.</td>
<td>222</td>
</tr>
<tr>
<td>Kachole, M. S.</td>
<td>132-136</td>
</tr>
<tr>
<td>Kaniewski, A.</td>
<td>21-25</td>
</tr>
<tr>
<td>Kazimierczak, W.</td>
<td>50</td>
</tr>
<tr>
<td>Keszler, P.</td>
<td>50, 214-221</td>
</tr>
<tr>
<td>Khelfat, K.</td>
<td>43-47, 75-78</td>
</tr>
<tr>
<td>Klein, H. S.</td>
<td>198</td>
</tr>
<tr>
<td>Kobylanska, M.</td>
<td>70-75</td>
</tr>
<tr>
<td>Koch, U.</td>
<td>63</td>
</tr>
<tr>
<td>Kroll, P.</td>
<td>221</td>
</tr>
<tr>
<td>Lampinen, E.</td>
<td>35-43</td>
</tr>
<tr>
<td>Lavrushenkov, L. F.</td>
<td>:162</td>
</tr>
<tr>
<td>Leybin, L.</td>
<td>49</td>
</tr>
<tr>
<td>Limanowska, H.</td>
<td>70-75</td>
</tr>
<tr>
<td>Lisiecka, K.</td>
<td>78-81</td>
</tr>
<tr>
<td>Lorenz-Plucinska, C.</td>
<td>149-156</td>
</tr>
<tr>
<td>Machoy, Z.</td>
<td>51</td>
</tr>
<tr>
<td>Maheshwari, U. R.</td>
<td>49</td>
</tr>
<tr>
<td>Mayhew, R. R.</td>
<td>53</td>
</tr>
<tr>
<td>Merad, R.</td>
<td>43-47, 75-78</td>
</tr>
<tr>
<td>Merrett, A. L.</td>
<td>105</td>
</tr>
<tr>
<td>Mietkiewska, B.</td>
<td>78-81</td>
</tr>
<tr>
<td>Mitrega, J.</td>
<td>78-81</td>
</tr>
<tr>
<td>Mohamed, A. H.</td>
<td>110-118</td>
</tr>
<tr>
<td>Mohamedally, S. M.</td>
<td>137-143</td>
</tr>
</tbody>
</table>

225
Naceur, J. 45-47
Nauer, J. 75-76
Norton, F. W. 3

Okunev, V. N. 162
Oleksyn, J. 149-156
Opalko, K. 78-81
Overill, R. E. 222

Paez, D. 87-96
Parr, P. D. 14-20
Patterson, C. 223
Pawar, S. S. 132-136
Pesonen, A. 35-43
Phil, L. 137-142
Philibert, C. 157-161
Principato, R. 52

Radhiah, G. 81-87
Rajalakshmi, K. 81-87
Ream, L. J. 53, 208-214
Reggab, M. 43-47, 75-78
Rioufol, C. 157-161
Robinson, C. 64-69
Rydzewska, A. 21-25

Sabates, V. I. 3
Sandberg, G. 124-131
Sharma, Y. D. 173-177, 177-190
Singh, K. 172-177, 202-208
Soni, H. C. 132-136
Strubig, Von W. 156
Susheela, A. K. 169-172, 173-177, 177-190, 191-198, 199-202, 202-208
Swanson, D. E. 3

Tabet Acil, M. 43-47, 75-78
Tausch, G. 31-35
Taylor, F. G. 14-20
Taylor, J. S. 48-49
Teherani, K. D. 31-35
Thylstrup, A. 106, 107, 131
Toth, L. 214-221
Trunov, V. I. 162

Velebit, L. 107-108

Waldbott, G. L. 52-53, 109, 169-172
Weatherell, J. A. 64-69
Wix, P. 137-143

Yaeger, J. A. 107
Yu, M. H. 97-104
Zelles, T. 50, 214-221
Acetanilide hydroxylase 132-136
Adenyl cyclase 202-208
Cyclic activity assay methods 203
Adrenochromes 103
Aldehyde, saturated, method for measuring 187
Alkaline phosphatase 140, 141, 142
Aluminum gel 39
Aluminum smelter, children near 21-25
Ammonium fluoride 50
Analysis, fluoride, method for invertebrates 58-59
small mammals 58-59
vegetation 58-59
Analyses of calcium 65
phosphorus 65
Andhra Pradesh, India 82
Anesthetics, new fluoride-containing aliflurane 163
sevoflurane 163
synthane 163
Antidote for fluoride 75
Apatite, fluoridated 54
Artamin 32
Arthritis, rheumatoid 5, 39, 54
Arthrosis 108
Ascorbic acid altered 97-104
depletion of adrenal 103
method of analysis 98
Atomic absorption spectrophotometer 22, 26, 27
Atomic absorption spectrophotometry copper 82-87
zinc 82-87
magnesium 82-87
ATP 203
Autoradiography 145, 147
Balance studies calcium 75-76
phosphorus 75-76
Barytes 57
Biological fluids 87-96
Bieszki, Poland 70, 73
Bone
method of analysis 137
normal 137-143
pathological 137-143
iliac 137
costal 137
Boron, action of, in fluorosis 75-78
Breast milk copper 81
magnesium 81
zinc 81
Calcification of arteries 1
interosseous membranes 1
ligaments 1
muscular attachments 1
tendons 1
Calcite 57
Calcium assays 22
Calcium fluoride 6
Calcium in plants migration 144-149
reaction with fluoride 144-149
Calcium phosphate 164
Calcitonin 137-143
Calciurea 157-158, 161
Calibration curve 32
cAMP See Cyclic AMP
Cancer 5
Carbonic anhydrase 50
Carboniferous limestones in England 57
Carcinoma cells 122
Cataract changes 3
Cellulose acetate strips, staining method 194
Chemical industry compounds ammonia 78
fluoride 78
sulfur 78
Chloroplast, electron transport 105
Chloroplast membranes 154
Chondroitin sulfate determination method 194
Chromosomal aberrations 110-118
Chromosomes bone marrow cells 111
Subject Index

Chromosomes (cont.)
 meiotic from testes 111
 chi-square values of treatments of 113-115
Citrate buffer 32
Cockerels (Gallus domesticus) 97-104
Collagen
 fiber 199
 metabolism 203
 protein
 amino acid composition 178-180
 catabolism 188-189
 crosslink precursors 187-189
 extraction, method of 182
 F- action on 177-190
 hydroxyproline content 160-182
 preparation, method of 178, 150, 162, 187-189
 salt soluble extraction procedure 187
 studies on 14C proline uptake 182-183
 total, determination of 182, 203, 205
Copper 81-87
Creatininemia 157-158
Cryolite 2
Cyclic AMP (cAMP)
 assay of
 bone plasma 202-208
 cell functions, modulator of 12
 method of separation 203
 Cytochrome c reduction E
 Cytochrome oxidase 51
 Cytolysis E

Dark respiration 149-156
Dehydroascorbic acid 97-104
Dept. of Energy 14-17
Derbyshire, England 57
Diabetes mellitus 219
Diabetic rats 214-221
Digital pH meter (Orion) 29, 111
p-Dimethyl aminobenzaldehyde 138
Dimethyl formamide (HN-) 48
Dimethyl sulfoxide 48
DNA 117, 119, 121-122, 222
DNA-metabolism 31, 34
D-penicillamine 31-35

EDTA 11, 131
Electron microscopic studies of endoplasmic reticulum 162
mitochondria 162
Electron microscopy, scanning
Enteroviruses 221
Exocytosis 4-13
Exostoses 1
Fescue grass 14
Festuca rubra 60
Fluorena 75-76
Fluoride
 accumulation 144-149
 acute intoxication
 accidents to water supply 169
 prophylaxis for tooth decay 169
 reported spills 170-171
 symptoms 169, 170
 amount in
 air 78
 blood 32-33, 43-47
 body fluids 87-96
 bones 61-66, 77
 claws 47, 77
 grasses 59
 hair 43-47
 invertebrates 60
 mammals 56-63 (Correction: p. 223)
 nails 43-47
 saliva 78-81
 soft tissue 61-62
 surface soil 59
 tea 156
 tooth enamel 21-25, 78-81
 urine 21-25, 32-33, 45, 78-81
 vegetation 59
 water 34, 44
 analyses
 blood 33, 37
 urine 32-33
 vegetation 15-16
 balances
 ambulation 49
 bed rest 49
 content of
 erythrocyte fluid 175
 serum 173-174
 tissue, calcified 176
 tissue, noncalcified 173, 175
 urine 173-174
 water 169
 elevated water levels, cause of
 crippling fluorosis 132
 growth retardation 132
 kidney damage 132
 mottled enamel 132
 fate of 15:173-177
 fecal 49
 intoxication, types of
 curative 75
 preventive 75
Fluoride
 intoxication, types of spontaneous detoxification 75
 subacute 76-77
 mechanism of action 64-69
 metabolism 46
 microcapillary electrode 215
 migration 144-149
 pollutant from aluminum smelting 57
 chemical plant 78
 fertilizer manufacturing 57
 glass manufacturing 57
 potassium 48, 50, 105, 222
 serum, method of analysis 173, 175
 reaction to calcium in plants 144-149
 safe level for chickens 103
 school children affected by 78-81
 sodium, cytological effects (on mice) 110-118
 toxicity
 chronic 2
 genu valgum 1-3, 25-31
 genu varum 1-3, 30
 uracil system 48-49
 Fluororganic anesthetics
 fluroxane 51
 halothane 51
 methoxyflurane 51
 Fluorosuccinic acids 51
 Fluorspar used in aerosol propellants 57
 fluoride compounds 57
 steel 57
 Fluorosis
 bone, niflumic acid induced 54
 dental
 appearance, clinical 106
 aggravating factors 70-75
 children, in 70-75, 78-81, 106
 classification 52, 106
 degree affected 52
 location 52
 mottling 70, 106
 opacity with pitting 73
 severe cases 74
 tea, role of 74
 Fluorosis industrial
 creatinine SK 108
 mean bone F⁻ content 108
 mean urinary F⁻ level 108
 Fluorosis industrial (cont.)
 radiographs 107-108
 skeletal
 drug-induced 54
 osteomalacic 1
 osteoporotic 1
 osteosclerotic 1
 Forestier's syndrome 108
 GAG 192-196, 199-202
 Gamma-Glutamyltransferase 157-161
 Genu valgum 81-87
 Geranium (Pelargonium zonale) 145-146
 Gladiolus 155
 Glucose, method of determination 215
 ß-glucuronidase 6, 7
 Glutamic acid 162
 Glutamine 162
 Glycolysis 12, 196
 Glycosaminoglycans (GAG) estimation of, in sera 200
 F⁻ ingestion and influence on 191-198
 levels in fluorosed human subjects 199-202
 precipitation, method of 194
 Granulocytes 4-13
 Golgi, complexes 208-209, 211
 Granulocytes 4-13
 Guinea pigs 157-161
 Halides 48
 Hematopoietic system 119
 Hemodialysis 35-42, 169
 Hemostasis 76
 Hepatocytes, rat liver 162
 Hexosemonophosphate shunt 8, 10
 Histamine 50
 Hydrofluorosis 1, 77
 Hydrofluosilic acid 169, 171-172
 Hydrogen bonding, 48-49, 222
 Hydrogen fluoride 7, 15, 110, 124-131, 144, 149-156, 157-166
 Hydroxyproline
 method of extraction 180
 urinary 1, 137-143
 Hyperglycaemia 198
 Hyperostosis 108
 Hyperparathyroid 75-76
 Hyperparathyroidism 1, 26
 Hypervascularization in bone 55
 Hypocalcaemia 75-76
 Hypophosphatemia 75
Iliac crest 54, 176, 180, 192, 196, 204
In memorium, George L. Waldbott, M.D. 165-168; P. E. Zanfagna, M.D. 109
Index of dental caries 70
Deans 73, 106
DMFS 70, 78-80
Larson 79
Indoacid 32
Indomethacin 31
Industrial gases, toxic 155
Infrared
Gas analyzer 150
Spectral properties 48
International Conference of Fluoride Research (12th) 200
Iodides
Histidine 51
Sulfenic acid 51
Tyrosine 51
Ion selective (F) electrodes 15, 21, 27, 31, 32, 36, 45, 54, 59, 65, 79, 89-91, 99, 111, 125, 137, 173, 175-176
Ionic plasma fluoride 35-42, 44
Iron sintering plant (in Sweden) 124
Jugular veins 96
Kidney 175, 202-204, 219
Kiruna, Sweden 125
Kodak film 145
Kornik, Poland 150
Lactate dehydrogenase 6, 48
Lead 57
Leukocytes 119-123
Lithium fluoride 50
Liver 175, 202-204, 219
Loblolly pine (Pinus taeda L.) 14-20
Lysozyme 6, 7
Lysozyme 6, 7
Mast cells (rat) 50
McCann method for bone fluoride 54
Microangiograms 55
Microangiography 107
Microscopy of bone marrow 119, 121
Microsome
Aminopyrine N-demethylase 132-136
Renal 132-136
Protein 133-134
Microtis agrestis (short-tailed field vole) 56-63
Mineral aspects of dentistry (book review) 164
Kolybdenum 26, 30, 86
Monofluorophosphate 223
Mountain birch (Betula tortuosa) budburst 124-131
Fluoride content of leaves and buds 125
Muscle glycolysis 48
Myeloperoxidase 51
NADH 133-135
NADPH 132-136
Nicotinamide adenine dinucleotide 48
NN-dimethylformamide 48
Oak Ridge Gaseous Diffusion Plant 14, 17-20
Osteoclastic activity 119
Osteoid
Breakdown 137-143
Formation 119
Osteomalacia in F- toxicity in humans 1-3, 86, 105, 119
Monkeys 2
Osteoporosis 1-3, 22-23, 26-30, 34, 86, 105
Osteosclerosis 1, 22-23, 26-27, 86
Overfluoridation 169-172
Oxidase system, mixed function 132-136
Parathyroid gland 53, 208-214
Parotid gland 50
Peas (Pisum sativum) 105
Penicillamine (D-) 31-35
Phagocytosis 4
PH meter - digital 32
Phosphatase 227
Phosphate, 32P labelled 66
Phosphatases 157-158, 161
Phosphodiesterase 206
Phosphorylation 51
Photorespiration 149-156
Photosynthesis 149-156
Picomole 205
Podjuchy, Poland 79-80
Police, Poland, chemical plant 78
Polymorphism nuclear leucocytes 51
Polyurea 157-158
Ponderosa pines 16
Potassium fluoride 48, 50, 105, 222
Prenatal 222
Protein iodination 10
Proteoglycans 192-193
Punjab, India 132
Pyruvate 48
Rabbit 173, 175-176, 178-189, 191-198, 200-201, 202-208, 211
Radioactive 42Ca 144, 147
Radiograms of
forearms 21
hands 21
Radiography 76-77, 81
Radiometer 37, 173, 175
Rat 64-69, 208-214, 214-221, 223
Regression coefficient 38
Renal parenchyma
biochemistry 157-161
histology 157-161

Respiratory effect 51
Rheumatoid arthritis 31-35
Riboflavin 162
Ribonucleic acid 48
RNA 105, 119, 121-122, 222
Saliva 78-81, 87
Scotch pine (Pinus sylvestris) 149-156
Serum
alkaline phosphatase 214-216, 219
fluoride 45, 87, 173, 174
Sialic acid (N-acetyl-neuraminic acid)
estimation of, in serum (Winzler) 200
levels in fluorosed human serum 199-202
Sialosis 219
Sodium fluoride 2,97,105,110-113,162
Sorex araneus (common shrew) 56-63
South Algeria 44
Soy protein extraction of fat 98
Streptococcus mutans, growth of 53
Streptozotocin 214-221
Submandibular salivary gland 50
Succinate dehydrogenase 51

Sulfahexafluoride 63
Sulfur hexafluoride pas 3, 221
Superoxide production 4, 8-11

Teeth
dentine, developing in humans 107
enamel, developing in humans 78, 107
fluorotic primary 131
permanent 131
incisors, rats 107
mottled 52
Tibial bone fragment 54
TISAB 89, 91
Tissue, noncalcified, method of analysis 173
Tooth enamel, developing 64-69
Total F determination methods
calcination 90
microdiffusion 90
selective electrode readings 90
Toxicity of inhalation anesthetics
(book review) 162
Trace minerals 25, 26, 27, 29, 57, 81-87
Ultrastructural tissue preparation
209
Uracil 48-49, 222
Uranium enrichment UF6 14,
Urinary fluoride 49, 78, 87, 109
Urinary hydroxyproline 137-143
Urine
fluoride content 173-174
method of analysis 173
Uronic acid, determination method
(Bitter and Muir) 194

Venipuncture 87
Virus
NaF effect 221
Vitamin C
kidneys, synthesis of 102
increased levels 103
in tissue 97-104
Vitamin D 2

Water, F in 1, 26, 30, 34, 37, 43-44, 46, 52, 53, 70, 81, 88, 93-94, 106, 110, 119
Zinc 57, 81-87
Fluoride in (cont.)
- cereals 4:73; 8:102; 9:116-17; 13:84
- chicken 10:142; 13:44; 46; 14:14
- chromosomes 12:213
- citrus fruit 5:156
- clams (rabbit) 14:21-29
- clover 8:228; 10:153
- coal 7:175; 16:21; 10:48
- coffee 6:73; 74; 130-132; 7:27; 33, 193; 17; 10:66-116
- cord blood 8:179
- corn 15:1-5; 19; 120-125
- deer 8:96; 182-191; 9:97
- dental enamel 7:166; 8:155
- dentin 10:143
- dentures 7:227
- diet 14:89; 7:161; 228; 8:157-158; 9:213; 10:41
- dog food 14:191
- drugs 14:50
- dust 5:89; 14:194
- eggs, bird, 11:197-207
- elk 9:79, 87
- eye drops 10:22
- factory dust 12:201
- feces 8:109; 19; 10:193; 11:203; 208; 14:95
- fertilizer supplements 7:84
- fertilizer plant 4:101
- fertilizers 7:221
- fiberglass 7:221
- finger nails 14:12
- Finland 14:144
- flies 6:74; 8:185; 13:105-116
- fish 2:71; 5:83; 10:142; 13:70-75; 17:121; 14:115-118, 160-165
- fluorinated communities 6:82
- fluorospar wastes 9:155
- fly ash 9:113
- food chain 7:184; 8:226; 11:109
- forage 8:185
CUMULATIVE AUTHORS' INDEX 1968 - 1982

Baer, H. P. 11:157-159
Baier, C. L. 6:68-69
Bakhos, Y. 1163-164

Ballantine, J. 13:80
Balint, J. 12:155-162; 15:105
Barber, W. 18:43
Barrett, R. S. 14:47
Bartan, U. 13:57-64
Bazile, M. 14:66
Batten, J. 7:63
Baud, C. A. 12:103-108; 15:54-56
Beamuch, J. 13:141
Beck, R. 11:157-159, 159-161
Becker, W. 15:63
Belanger, L. 12:304-207
Belisle, J. 14:195
Benali, M. 12:136-143, 172-176
Benn, A. J. 14:105
Bennett, A. J. 14:47
Benouiche, M. 11:101-103
Bentley, J. 13:89
Beppe, W. J. 13:148
Berger, D. A. 13:153-156
Berman, J. 7:117
Bernat, M. 14:46
Berry, K. 12:33-47
Berry, R. J. 2:157-167
Bewick, G. 11:142-150
Beyer, W. 17:36-78
Biele, M. 15:43-87
Bierrenbaum, M. L. 8:118-115
Bilir, S. 13:81-85
Binton, B. 15:71-72
Binnangor, U. 12:5-8; 14:96
Bischof, A. M. 6:73-78; 7:78-84
Bisonck, M. 12:18-21
Blanc, B. 10:174-186
Blanke, N. V. 6:68-69
Blum, R. 6:73-78
Blomoe, M. 3:310
Bosch, J. 10:11-12
Bodoin, H. 12:209-210
Bonne, N. 11:159-161
Bonne, H. 11:137-142
Bollati, M. A. 15:107-108
Botwin, G. 12:103-108; 15:54-56
Boltenhagen, D. 12:100-102
Bond, A. M. 14:48

CUMULATIVE AUTHORS' INDEX 1968 - 1982

Bonney, T. B. 9:215-216
Boockstein, F. 9:163-164
Borkopwink, C. F. 11:100-101
Bordoni, N. E. 6:67
Borco, I. 15:50; 214-221
Borrero, R. C. 216-217
Bortz, K. 1:223
Bosch, J. 10:174-186
Cobut, A. 5:8-14
Baudouin, C. 5:4-14, 82-84
Baylor, J. 3:162
Bourbonnais, F. 8:25-33; 15:157-161
Bousfield, L. E. 10:14-21
Boyard, W. J. 9:215-216
Boop, Z. 2:222-228
Bradley, W. G. 11:177-118
Brady, J. M. 10:89-91
Branchflower, R. V. 14:119
Brand, H. 4:98-98
Bredding, K. 2:161-162, 241-242
Bremer, C. 14:48
Brennan, H. 16:102
Brisson, D. 14:101
Brody, D. 11:122
Brook, C. 14:192-193
Broun, R. A. 13:185
Brown, L. A. 15:13
Brudol, F. 7:166-167; 9:163-164, 166
Bruckmller, R. 1:5-57
Burghal, A. I. 2:183-184; 8:11-11
Burian, H. M. 12:210
Burk, D. 10:102-125
D. 1:118
Burke, W. J. 7:60-61
Burkal, M. 137-170
Burns, N. D. 150; 255-59
Burns, R. 7:200-208
Busch, K. 12:277-282
Buse, H. 15:227
Byckowski, S. 4:98-100
Cakir, A. 12:105-106
Calderoni, J. 13:170-171
Calkins, J. 13:89
Callan, R. S. 14:48
Calvert, D. M. 2:134
Cape, S. G. 13:99
Cappelletti, L. 4:56-63
Carlier, D. 10:174-186
Carnow, B. W. 14:172-181
Carter, P. D. 9:167-168
Carter, R. 11:40-41
Cavagn, G. 2:214-221
Cavert, D. N. 2:134
Chadma, S. 15:105
Channel, M. 9:148-152
Chan, M. M. 7:56-59; 8:163-173
Chapman, M. 6:112-116
Chandler, W. J. 15:110-118
Chang, C. W. 6:162-178; 11:55-59
Charbon, S. 14:101
Chitt, T. 1:370-75, 117-121;
14:115-118
Chud, K. 7:106
Cochlin, N. 15:21-25
Chupin, S. 15:144-149
Christensen, M. S. 13:42-43
Church, L. E. 11:34-31
Cioffi, R. F. 5:165
Clark, J. H. 15:48-49
Clark, R. A. 15:151
Clark, W. M. 9:120
Clarke, R. 7:173
Clubb, R. J. 6:121-122
Cobb, W. T. 7:173
Cohen, J. M. 9:121-126
Cohn, S. R. 7:109-110
Collen, Y. 11:41-42
Clement, G. 12:229-235
Collins, C. J. 3:107-107
Cohen, M. 8:40-89
Cook, M. D. 9:215-216
Cooper, E. 13:80
Corbozaraolo, A. 13:83-84
Cordy, P. S. 8:118-119
Coronato, R. C. 3:135-140
Costar von Hoornhout, B. 7:165
Cotran, R. 5:164
Craig, G. G. 10:187-188
Crisman, J. W. 13:117-117
Cromer, R. 14:156-160
Crackenhake, J. 9:167-168
Cromey, J. A. 2:116-119
Cuttino, J. 9:117-118, 213-214
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theuring, A.</td>
<td>12:91-99</td>
</tr>
<tr>
<td>Thiers, G.</td>
<td>12:109-111</td>
</tr>
<tr>
<td>Thomas, W.</td>
<td>13:99</td>
</tr>
<tr>
<td>Thompson, A.</td>
<td>12:107-108</td>
</tr>
<tr>
<td>Thompson, G. L.</td>
<td>12:111-112</td>
</tr>
<tr>
<td>Thoma, H. M.</td>
<td>5:67-56, 7:52-57</td>
</tr>
<tr>
<td>Thalstrup, A.</td>
<td>5:160-167</td>
</tr>
<tr>
<td>Thomsen, J.</td>
<td>11:37-38</td>
</tr>
<tr>
<td>Tietz, R. E.</td>
<td>6:121-122</td>
</tr>
<tr>
<td>Tietz, K.</td>
<td>5:1120-201</td>
</tr>
<tr>
<td>Toth, Z. S.</td>
<td>5:121-221</td>
</tr>
<tr>
<td>Tournier, P.</td>
<td>5:125-133</td>
</tr>
<tr>
<td>Trabou, H. C.</td>
<td>5:54-55</td>
</tr>
<tr>
<td>Trunk, R.</td>
<td>11:15-20</td>
</tr>
<tr>
<td>Truett, H.</td>
<td>12:170-171</td>
</tr>
<tr>
<td>Turin, P.</td>
<td>3:43-45</td>
</tr>
<tr>
<td>Tsao, K.</td>
<td>6:118-119</td>
</tr>
<tr>
<td>Tschumper, J.</td>
<td>2:284-33</td>
</tr>
<tr>
<td>Truong, V. I.</td>
<td>15:162</td>
</tr>
<tr>
<td>Uehlinger, E.</td>
<td>7:1106</td>
</tr>
<tr>
<td>Uslu, B.</td>
<td>3:38-41</td>
</tr>
<tr>
<td>Valach, R.</td>
<td>2:73</td>
</tr>
<tr>
<td>Van den Bergh, S. G.</td>
<td>7:63</td>
</tr>
<tr>
<td>Van der Lugt, W.</td>
<td>4:15-20</td>
</tr>
<tr>
<td>van der Mijlbrugge, F.</td>
<td>10:118</td>
</tr>
<tr>
<td>van Horck, C.</td>
<td>11:181-199</td>
</tr>
<tr>
<td>van Toledo, B.</td>
<td>11:198-207</td>
</tr>
<tr>
<td>Van Caenenbroeck, V.</td>
<td>7:167</td>
</tr>
<tr>
<td>Vandenbergh, S.G.</td>
<td>7:63</td>
</tr>
<tr>
<td>Vanderweiden, L.</td>
<td>11:118-197</td>
</tr>
<tr>
<td>Varnai, L.</td>
<td>3:80-84</td>
</tr>
<tr>
<td>Vatsanaya, G.N.</td>
<td>13:193</td>
</tr>
<tr>
<td>Vaugan, H. W.</td>
<td>13:189</td>
</tr>
<tr>
<td>Veltuhuzen, C.</td>
<td>3:162</td>
</tr>
<tr>
<td>Veletz, L.</td>
<td>15:107-108</td>
</tr>
<tr>
<td>Venkatarkrishna-Bratt, H.</td>
<td>14:129-13</td>
</tr>
<tr>
<td>Verheyden, L.</td>
<td>11:37-13</td>
</tr>
<tr>
<td>Viallet, F.</td>
<td>4:82-83</td>
</tr>
<tr>
<td>Viovi, G.</td>
<td>2:40-48</td>
</tr>
<tr>
<td>Vogl, R.</td>
<td>10:146-147</td>
</tr>
<tr>
<td>Volkova, V. M.</td>
<td>6:122</td>
</tr>
<tr>
<td>Von Bentzinger, B.</td>
<td>8:115</td>
</tr>
<tr>
<td>Wagner, M. J.</td>
<td>3:106-107</td>
</tr>
<tr>
<td>Waksukatsu, H.</td>
<td>4:175-177, 177-178</td>
</tr>
<tr>
<td>Waldbott, G. L.</td>
<td>1:58-55, 94:102</td>
</tr>
<tr>
<td>Walden, B.</td>
<td>1:274-75</td>
</tr>
<tr>
<td>Tapschner, A.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, B.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, C.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, D.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, E.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, F.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, G.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, H.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, I.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, J.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, K.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, L.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, M.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, N.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, O.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, P.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, Q.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, R.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, S.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, T.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, U.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, V.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, W.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, X.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, Y.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, Z.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, a.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, b.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, c.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, d.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, e.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, f.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, g.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, h.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, i.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, j.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, k.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, l.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, m.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, n.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, o.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, p.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, q.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, r.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, s.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, t.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, u.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, v.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, w.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, x.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, y.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, z.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, A.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, B.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, C.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, D.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, E.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, F.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, G.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, H.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, I.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, J.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, K.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, L.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, M.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, N.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, O.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, P.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, Q.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, R.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, S.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, T.</td>
<td>7:66-67</td>
</tr>
<tr>
<td>Tapschner, U.</td>
<td>7:66-67</td>
</tr>
</tbody>
</table>
Andhra Pradesh (India) 3:207; 9:154, 185-200; 13:49-57; 15:82
Aneoma 5:25
Anesthesia, new fluoride-containing anesthetic 15:163
Synthone 15:163
Angiography 3:210
Angiotensin 13:4, 5, 148-151
Antidote for FAA poisoning 10:34-37
Antidote for fluoride 15:75
Antidotes for fluoroaluminate 11:59
Antidotes for 15:75
Antidotes for fluorosis 11:55-59; 15:75
Antidotes for fluoride poisoning 12:81
Autocontrastography 15:145, 177
Balance studies 15:75-76
Calcium 15:75-76
Phosphorus 15:75-76
Bariett, Texas, survey 14:49-50
Marine 15:77
Barytes 15:77
Basal metabolism 4:74
Bean leaves 12:155-162
Berlyllium fluoride 5:170; 10:96
Bevages, F content of 1:56-64; 2:82-84, 243; 3:8, 9, 11; 12:18, 55; 5:82-84; 8:129-131
Bindapur, India, fluorosis in 12:73-74; 13:28
Biological fluids 15:87-96
Biterbrush 7:187
Black-tailed deer 12:129-135
Walski, Poland 15:70, 73
Blood. See also Plasma. See also Fluoride effects on blood clotting in fluorosis 10:29-33
Count, near aluminum smelter 7:91
Fluoride, absorption and concentration of 4:1-2; 33-39; 4:195
In fluorosis 1:81; 92
In serum, normal range 18:123
In welders 2:17
Picture 5:23
Puruvic acid 3:122-123
Substitutes
Fluorocarbon 6:84-86, 88-93, 94-100, 101-106
Gases in artificial ventilation 6:97-98
Blood (cont.)
oxidation, extracorporeal 6:94-100
Oxygenation, intracorporeal 6:94-100
Perfluorochemicals 6:11-12
Sugar in NaF poisoning 11:170-174
Urea nitrogen, rise of 3:184
Black Cottonwood. See also, Cottonwood 7:177
Bluebunch wheatgrass 7:11-20, 29-30, 185-190, 196-197
Bone. See also, Fluoride in bone biochemistry in fluorosis 6:150
Biopsy 5:183; 14:10-13, 144
Brachyphalangy 8:176
Calcium 7:85-89, 203, 10:79
Changes in fluorosed deer 12:131
Chemistry 2:106-115, 142-152
Citrate 8:113; 14:45
Citric acid in 10:79
Collagen content 8:113
Collagen content by F 14:107-111
Cortical index 12:19-91
Coastal 15:137
Density in fluorosis 1:137, 151; 15:117; 14:43, 144
Development 4:178, 184
Dissolution 10:22-28
Enzymes 8:115
Epiphysial cartilage 4:131, 180, 186, 190
Fatty degeneration of marrow 4:163
Related to age 9:811, 85, 218-219
Fluoride in milk 3:204-207
Morphology 3:175-180
Tensile strength 3:207
Fractures after F treatment 10:144
Spontaneous 4:119
Bone (cont.)
Growth in
Asbestos Disease 4:174-178, 179, 184
Children 4:186-180
Experimental animals 4:161-162, 180-183, 183-188, 188-191, 190-193
Experimental fluorosis 12:27-28
Healthy, Japanese people 4:175-177
Kaschel Beck Disease 4:187
Lilac 14:10-13, 15:137
In cattle, rabbits or deer 10:76-82, 82-86; 12:129-135
Iron, increased by F 14:107-111
Marrow cells 4:163, 5:54-55
In rabbits 5:37-38
Megalocytes in 7:66
Matrix in fluoride intoxication 6:25-25
Meal 9:101
Mechanical properties 11:37
Method of analysis 15:137
Mineral analysis 12:18-27, 104
Content 12:20, 22, 131
Minerals
Analysis of 4:110, 116
9:213
Chemical composition of 4:111, 117
in Fluorosis 9:214; 11:173;
13:118-20, 18
Normal 12:106; 15:137-143
Pathological 15:137-143
Proliferation of 4:187
Prophylaxis of osteoporosis 11:52
Strength 7:56-59; 8:74-77, 84-133
Temporal 10:85-88
Vitamin A deficiency 4:188
Atmospheric. See also Aluminum factories, plants or smelters; pollution from at Garrison, Montana 7:7-31
At Stoken-on-Trent, England 14:47
Endemic area, in 14:51, 91
From phosphate rock
<table>
<thead>
<tr>
<th>Bone (cont.)</th>
<th>Calcium (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>width in fluorosis 12:22-25</td>
<td>kidney stones 13:12, 41-42</td>
</tr>
<tr>
<td>x-ray diffraction 8:77</td>
<td>penetration into corn 11:195</td>
</tr>
<tr>
<td>x-rays</td>
<td>phosphate 15:164</td>
</tr>
<tr>
<td>in fluorosis 7:201</td>
<td>placentae 8:241</td>
</tr>
<tr>
<td>in renal osteodystrophy 4:119, 121</td>
<td>plants</td>
</tr>
<tr>
<td>in ossification of hand bones 4:178, 179</td>
<td>migration 15:144-148</td>
</tr>
<tr>
<td></td>
<td>reaction with fluoride 15:144-148</td>
</tr>
<tr>
<td></td>
<td>planaria in fluorosis 11:117</td>
</tr>
<tr>
<td></td>
<td>poisoning (rabbits), chronic 11:102</td>
</tr>
<tr>
<td></td>
<td>poisoning, NaClF6 8:139</td>
</tr>
<tr>
<td></td>
<td>serum 5:232</td>
</tr>
<tr>
<td></td>
<td>spina bifida 9:10-31</td>
</tr>
<tr>
<td></td>
<td>thryroid 9:12-28</td>
</tr>
<tr>
<td></td>
<td>urinary excretion 11:106</td>
</tr>
<tr>
<td></td>
<td>urine 8:183, 11:122-124</td>
</tr>
<tr>
<td></td>
<td>13:13-14</td>
</tr>
<tr>
<td></td>
<td>14:46</td>
</tr>
<tr>
<td></td>
<td>water 8:35</td>
</tr>
<tr>
<td></td>
<td>influence on fluoride retention 6:252</td>
</tr>
<tr>
<td></td>
<td>interaction with F- 3:17, 190</td>
</tr>
<tr>
<td></td>
<td>with fluorocacete 3:17, 180</td>
</tr>
<tr>
<td></td>
<td>kinetics 3:176-180, 7:110</td>
</tr>
<tr>
<td></td>
<td>leucine, neutrophils 8:91</td>
</tr>
<tr>
<td></td>
<td>oxalate in flurides 11:195-196</td>
</tr>
<tr>
<td></td>
<td>in fluoride poisoning 7:59</td>
</tr>
<tr>
<td></td>
<td>release from plasma 7:176</td>
</tr>
<tr>
<td></td>
<td>retention in bones 7:58-59</td>
</tr>
<tr>
<td></td>
<td>treatment with 5:231</td>
</tr>
<tr>
<td></td>
<td>uptake 8:230</td>
</tr>
<tr>
<td></td>
<td>glucaric acid, in HF burns 3:200-203</td>
</tr>
<tr>
<td></td>
<td>in arteries 1:93, 99, 151</td>
</tr>
<tr>
<td></td>
<td>Cachexia 1:78</td>
</tr>
<tr>
<td></td>
<td>vas deferens 5:86-88</td>
</tr>
<tr>
<td></td>
<td>interosseous membranes 15:11</td>
</tr>
<tr>
<td></td>
<td>ligaments 15:11-119, 15:137-143</td>
</tr>
<tr>
<td></td>
<td>liver 14:99</td>
</tr>
<tr>
<td></td>
<td>muscular attachments 15:11</td>
</tr>
<tr>
<td></td>
<td>tendons 15:13</td>
</tr>
<tr>
<td></td>
<td>Cacit 15:57</td>
</tr>
<tr>
<td></td>
<td>Cacitoxin 11:115-119, 15:137-143</td>
</tr>
<tr>
<td></td>
<td>in bone 9:312</td>
</tr>
<tr>
<td></td>
<td>in plasma 9:269, 11:138</td>
</tr>
<tr>
<td></td>
<td>Calcium absorption 2:90, 5:214-215, 12:213-14:36</td>
</tr>
<tr>
<td></td>
<td>in arteres 1:96-97, 9:26</td>
</tr>
<tr>
<td></td>
<td>blood (fluorosis) 12:140, 210</td>
</tr>
<tr>
<td></td>
<td>bone 10:79, 12:148</td>
</tr>
<tr>
<td></td>
<td>drinking water 6:113, 9:101-104</td>
</tr>
<tr>
<td></td>
<td>fluoride poisoning, acute 7:1, 11:43</td>
</tr>
<tr>
<td></td>
<td>food 9:213-214</td>
</tr>
<tr>
<td></td>
<td>from water 8:222</td>
</tr>
<tr>
<td></td>
<td>hair 3:188-191</td>
</tr>
<tr>
<td></td>
<td>infusion in fluorosis 11:166</td>
</tr>
<tr>
<td></td>
<td>interference with F- analysis 11:142, 147, 183</td>
</tr>
<tr>
<td></td>
<td>in Fluorospar mine (fluor spar) 2:136, 10:95</td>
</tr>
<tr>
<td></td>
<td>Hamilton, Ontario, 10:95</td>
</tr>
<tr>
<td></td>
<td>Industrial area 7:153-165</td>
</tr>
<tr>
<td></td>
<td>inhibition of 2:136-140</td>
</tr>
<tr>
<td></td>
<td>Newfoundland 2:136, 10:95</td>
</tr>
<tr>
<td></td>
<td>Cancer (cont.)</td>
</tr>
<tr>
<td></td>
<td>Russia 2:136, 10:95</td>
</tr>
<tr>
<td></td>
<td>largest U.S. cities 10:98-100, 10:119, 124-125</td>
</tr>
<tr>
<td></td>
<td>Capillary sprouts, F induced 3:172</td>
</tr>
<tr>
<td></td>
<td>Carbohydrate metabolism 6:23-25</td>
</tr>
<tr>
<td></td>
<td>Carbonated beverages 10:199</td>
</tr>
<tr>
<td></td>
<td>Carbonic anhydrase 6:205</td>
</tr>
<tr>
<td></td>
<td>Carbonic anhydrase 15:50</td>
</tr>
<tr>
<td></td>
<td>Carboniferous limestines in England 15:57</td>
</tr>
<tr>
<td></td>
<td>Carcinoma cells 15:122</td>
</tr>
<tr>
<td></td>
<td>Cardiac toxicity 4:81</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular diseases mortality 8:114</td>
</tr>
<tr>
<td></td>
<td>serum fluoride in 8:114</td>
</tr>
<tr>
<td></td>
<td>Caries prevention 8:236-240</td>
</tr>
<tr>
<td></td>
<td>endogenous theory 2:117-118</td>
</tr>
<tr>
<td></td>
<td>fluoride, role of 3:71-79, 10:89-90</td>
</tr>
<tr>
<td></td>
<td>incidence 4:101</td>
</tr>
<tr>
<td></td>
<td>Cataract changes 15:13</td>
</tr>
<tr>
<td></td>
<td>Cattle copper deficiency 1:53</td>
</tr>
<tr>
<td></td>
<td>cytogenetic studies 11:156</td>
</tr>
<tr>
<td></td>
<td>fluorosis in 1:141-249, 8:56, 134</td>
</tr>
<tr>
<td></td>
<td>10:76-82, 13:57-64, 171-172</td>
</tr>
<tr>
<td></td>
<td>176-182</td>
</tr>
<tr>
<td></td>
<td>Cell, resistance to F 12:167-168, 13:147, 91</td>
</tr>
<tr>
<td></td>
<td>Central nervous system, F effect 11:11</td>
</tr>
<tr>
<td></td>
<td>Cercopithecus aethiops (mountain marmoset) 7:1178</td>
</tr>
<tr>
<td></td>
<td>Cervus, F in 4:73</td>
</tr>
<tr>
<td></td>
<td>Chama punctatus (fish) 13:70-75, 17:121, 14:15-118</td>
</tr>
<tr>
<td></td>
<td>Narcan's joints 1:78</td>
</tr>
<tr>
<td></td>
<td>Chemical industry compounds 15:78</td>
</tr>
<tr>
<td></td>
<td>fluorides 15:78</td>
</tr>
<tr>
<td></td>
<td>sulfur 15:78</td>
</tr>
<tr>
<td></td>
<td>Chemical-technological studies 1:110-112</td>
</tr>
<tr>
<td></td>
<td>Cheat circumference 4:160</td>
</tr>
<tr>
<td>Fluoride (cont.)</td>
<td>Fluoride content (cont.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>analysis (cont.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride in (cont.)</td>
<td>Fluoride in (cont.)</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>citrus fruit 5:156</td>
<td>gladiolus 6:73; 8:90</td>
</tr>
<tr>
<td>cord blood 8:179</td>
<td>hay 5:77; 10:84</td>
</tr>
<tr>
<td>corn 11:18-28; 129-135</td>
<td>henbit 6:114</td>
</tr>
<tr>
<td>dentin 10:143</td>
<td>insects 6:135; 14:195</td>
</tr>
<tr>
<td>dentists 7:221</td>
<td>intake 7:4-6; 8:154-163</td>
</tr>
<tr>
<td>diet 1:14; 7:161, 228; 8:157-158; 9:213; 10:41</td>
<td>intake in</td>
</tr>
<tr>
<td>drugs 14:50</td>
<td></td>
</tr>
<tr>
<td>dust 5:69; 14:194</td>
<td></td>
</tr>
<tr>
<td>eggs, bird 11, 199-207</td>
<td></td>
</tr>
<tr>
<td>eye drops 10:2</td>
<td></td>
</tr>
<tr>
<td>factory dust 12:201</td>
<td></td>
</tr>
<tr>
<td>feces 8:1, 19, 228; 10:193; 11:203; 208; 14:95</td>
<td></td>
</tr>
<tr>
<td>fertilizer 7:221</td>
<td></td>
</tr>
<tr>
<td>fingernail 12:14</td>
<td></td>
</tr>
<tr>
<td>Finland 14:144</td>
<td></td>
</tr>
<tr>
<td>fis 6:74; 8:195; 13:105-116</td>
<td></td>
</tr>
<tr>
<td>fish 2:71; 5:83; 10:142; 13:70-75; 117-121; 14:115-118, 160-165</td>
<td></td>
</tr>
<tr>
<td>fly ash 5:113</td>
<td></td>
</tr>
<tr>
<td>forage 8:185</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name</td>
<td>Initials</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Cyplik, F.</td>
<td>M.</td>
</tr>
</tbody>
</table>
AAAS, Denver convention 10:141-144;
13:90-95
Abies alba, F in 9:63-70; 11:68-76,
186-197
Acacia georgeana 1:14; 4:138;
6:189-190, 201, 204, 210, 213,
214, 218-219, 297; 7:108, 136;
9:204, 209
Acetanilide hydroxylase 15:132-
136
Acetamide 10:14
Acetate 6:210
Acetocetate 6:23
Acetylcholinesterase 3:43
Acetyl CoA 6:196, 228-229
Achillea millefolium 9:209
Achlyodrya 1:80
Acid-labile organic F 4:38
Acid phosphate 7:73; 9:84,
11:107, 112-113, 154, 158;
14:6, 61-68, 132-141
Acne 9:121; 10:1, 40-41
Aconitase
fluoride effect on 6:204-205;
7:136
Inhibition by
fluoracetamide 5:220-224
fluorocurate 3:102; 6:194,
226
Aconitase hydratase 6:230;
11:114-115
Acute F intoxication. See
Fluoride intoxication, acute
Adenine nucleotides, release from
platelets 9:177-177
Adenocystis triphyllath 5:105;
6:237, 240; 14:132-141
Adey cyclase, effect of
fluoride ion on 6:15-32; 15:202-208
Adults, fluoride balance studies 6:181
Adrenal
function 4:75; 11:4-9, 148-151
plasma 12:65-71, 111, 210
Adrenochrome 15:103
Aerial photography 11:135-141
Aerosols 4:61
Age and fluoride clearance 8:203
Aging of trees, effect on
F distribution 11:193-194
F uptake 11:185-190
Agropyron cristatum (crested
wheatgrass) 6:203-215; 7:10-
15, 22-23, 187-189; 11:14
Agropyron spicatum (bluebunch
wheatgrass) 7:11-20, 24-25,
187-190, 196-197
Agrostis tenella F effect on
11:183-184
Air
analysis for F, See Fluoride
analysis, air pollution
at enamel factory 12:102-103
at Ferndale, Wash. 12:129-135
at Garrison, Mont. 7:7-31
at glass factory 12:48
at Graz, Austria 4:97
blood in children, affected by
2:34
book by Garber 2:160-61
by F 4:211, 85; 5:145
carcinoma from 2:189
citrus groves 2:97-105
control 2:32
data from smelter 12:107
effect on biological life
2:33
effect on milk 4:90
effect on teeth 10:93
fluoride role in 2:14-12
fluorosis in workers at
smelter 12:18-27, 91-99
food contaminated by 2:120
from aluminum factory 7:88-
92
from defluorinated plant
7:8
from power plants 10:47-62
from smoke disasters 17:176-
176
in cattle 10:76-81
in deer mice 10:59-60
in pines 10:47-58
in pines near smelter 12:9;
156
natural (volcanoes) 10:152-
156
near smelter 12:129-135
“neighborhood” fluorosis 2:1-
3, 206-213
Rhode's account 2:1
sources of 2:14-12; (cm 2:127);
7:4-6, E water contaminated by
2:212
welding fumes 2:24
quality for F in Texas 3:151
standards for USA 3:143-152
Air (cont.)
survey 3:183-152
sampling 4:94
Airborne fluoride, See Fluoride,
environmental, airborne
Albany 8:4; 5:227
Albumin 13:72
Albusin/globulin in fluorosis
11:25-26
Aloxon solution 7:10
Aldosterone 13:8; 5; 149-150
Alpha 7:11, 15, 24-26
Algic, fluoride in 7:131
Alimentary fluorosis 4:110
Alizar complexone 1:16-17
Alkaline phosphatase 3:16-37;
4:73; 5:8, 10, 20-31, 213-219;
6:147; 7:36, 43, 204, 211;
8:17, 12; 119; 9:42-46; 10:76-
82, 125, 131; 11:101-103, 111-
112, 117-118, 120-125, 154;
12:89, 184-154, 210, 211;
13:19; 132; 14:12-13, 64, 101,
132-141;
Alkaline reaction 3:16-37;
15:141, 140, 142
Allergic response 9:36-36, 145
Alophea 8:61; 13:86
Aluminum
antidote for F 12:105; 14:95
factories, plants or smelters,
pollution from effects on health 2:25-27, 4-
36, 37-39, 42-48, 55-59;
3:42-43, 4:85-86, 149-150;
5:14; 17, 169; 6:138-142;
7:143; 8:162-63; 9:177;
10:89, 95, 125-136;
11:46-54; 14:174-179;
15:21-24
effects on workers 2:49-150;
8:62-63, 177; 10:125-136;
11:46-54; 12:21-213:1689;
14:61-68; 172:181
F in air 2:25-32, 38-40,
44, 46; 3:24-33; 10:14-15;
7:147-149
F in animal tissue 2:31;
55-59; 5:111-113; 13:171-172
F in eggs 11:198-207
F in food 2:26-27, 33;
3:18-21; 5:89-91; 11:202-
204
F in soil, effects on plants
Aluminum (cont.)
F in vegetation 2:25-27,
42; 5:89-91, 111-113; 10:14-21;
57, 89, 149-151; 11:129-135,
135-141, 187, 198-199; 13:105-
107, 110, 111; 14:114-116
F water in 2:31, 85,
in Canada 14:172-181
in Czechoslovakia 2:26-32;
10:12
in Germany 10:89; 11:198-207
in Italy 2:37-39, 40-48, 49-
54, 208, 5:14
in Montana 6:127-137; 10:14-21;
11:131-141, 211
in Poland 10:149-150
in Russia 5:169; 10:95
gel 15:39
organic matter complexes 13:124
smelter, children near 15:21-25
sulfate 13:99
Amalgam, F containing 10:174-
186
Ambient air 4:93
American Dental Association
11:164; 12:55
Amino acids 4:76; 14:187, 194
Amineulenic acid
effect of fluoride on 7:73-74
in cfr needles 7:78-83
interaction with calcium 7:78-
83
Ammonia 6:36
Ammonium fluoride 15:50
Ammoniumfluorid in potter
plant 3:62-63
Ampligol 13:96
Analysis of (See Fluoride Analysis)
air for F. See also Fluoride,
analysis, air automation 4:5-15
ion specific electrode 4:6-7
interfering ions 4:6-7, 8
water vapor distillation
4:22
fluoride, method for
invertibates 15:50-58
small mammals 15:50-58
vegetation 15:50-58
calcium 15:65
phosphorus 15:65
Analyzer, automatic 10:12-14
Cumulative Subject Index 1968 - 1982

Andhra Pradesh (India) 3:207;
9:154, 185-200; 13:49-57; 15:82
Anemia 5:35
Anesthesia 4Cont.
F-containing
5:103; 6:41-49; 12:165-166;
13:144; 14:181; 15:163
Anesthesia, new fluoride-containing
allifluorine
5:163
nzevoflurane 5:163
syanthene 5:163
Angiography 3:101
Angiotensin 3:144, 5, 148-151
Antifreeze for FAA poisoning
10:34-37
Antidote for fluoride 15:75
Antidotes for fluorosis 11:159
- 160; 13:30-38, 46; 96-99; 129-136
Antwerp, fluoride in drinking water
7:167
Aorta, fluoride levels 6:70
Apatite 7:208; 11:151, 171;
12:200; 15:68
April leaves, damage to 5:112
Aquatic organisms, indicators for F
pollution 14:102-107
Artamia
Arteries, calcification of 1:196-
Arthrilia 5:225; 14:52
Arthritis 4:64, 5:209-213; 7:66;
8:177, 9:19-24; 12:201, 136
Rheumatoid 15:14, 39, 54
Arthritis 15:108
Asbestos, fluoride content
5:170; 7:221
Ascorbic acid
in F-treated tissue
11:60-67; altered 15:97
depletion of adrenal 15:103
method of analysis 15:96
Anso Volcano Disease 4:161, 172,
175, 208
Assays for F. See Fluoride, analysis
Atherosclerosis 5:227-228
Atmospheric fluoride.
See also Aluminum factories, plants or smelters, pollution from
at Garrison, Montana 7:7-31
at Stoken-Trent, England 14:47
demic area, in 14:51, 91
from phosphate rock

Blood (cont.)
oxygenation, extracorporeal
production of fertilizer
pollution disasters, cause of
pollution near sulfur mining
Atomic absorption spectrophotometer
Atomic absorption spectrophotometry, copper
Atomic absorption spectrophotometry, magnesium
ATP in corn roots
ATPase
Autopsy, F poisoning
Autoradiography
Balance studies
calcium 15:75-76
phosphorus 15:75-76
Bartlett, Texas, survey
Barytes 15:57
Basal metabolism 4:74
Bean leaves 12:155-162
Beryllium fluoride 5:170; 10:96
Beverages, F content 1:56-
64; 2:82-84; 233; 3:8-9, 11,
9:12-18, 55; 5:8-84; 14:129-131
Bindapur, India, fluorosis in
12:73-74; 13:28
Biological fluids
Bitterbrush 7:187
Black-tailed deer 12:129-135
Kaszki, Poland 15:170, 73
Blood. See also Plasma and also, Fluoride effect on blood clotting in fluorosis 10:29-33
count, near aluminum smelter
fluorosis
fluoride absorption and concentration of 4:1-2, 38-39; 14:195
in fluorosis 1:81, 92
in serum, normal range
in welders 2:17
picture 1:13
pyruvic acid 3:22-123
substitutes
fluorocarbon 6:84-86, 88-
93, 94-100, 101-106
in artificial ventilation
6:97-98

Bone (cont.)
growth in
Aso Volcano Disease 4:174-
175, 177-178, 179, 184
children 4:158-160
experimental animals 4:161-
162, 180-183, 187-188, 189-
190, 193
experimental fluorosis 5:27-
28
healthy, Japanese people
4:175-177
Maschion Beck Disease 4:187
histology 5:227-229; 6:143-
146, 149; 7:212-217; 9:91-98,
127-138; 12:103-104
lilac 4:10-13; 15:137
in cattle, rabbits or deer
iron, increased by F 14:107-
111
marrow
cells 4:163, 5:54-55
in rabbits 5:37-38
meagocites in 7:66
matrix in fluoride intoxication
5:25-26
coal 9:101
measurement 4:163; 12:91-99
mechanical properties 11:37
method of analysis 15:137
mineral analysis 12:18, 27, 104;
14:15
content 12:20, 22, 131
minerals
analysis of 4:110, 116;
9:213
chemical composition of
4:111, 117
in fluorosis 9:214; 11:173;
14:11-21, 184
normal 12:106; 15:137-143
pathological 15:137-143
proliferation of 4:187
prophylaxis of osteoporosis
10:32
radiography 5:227-229; 6:143-
145, 149; 7:212-216; 9:91-98,
12:103-104
strength 7:56-59, 8:77-88,
163-171
temporal 10:86-88
vitamin A deficiency 4:188
Fluoride (cont.)
intoxication, acute
animals, in 1:102-103; 5:58-66; 7:135-142; 11:106-107; 12:76-84; 13:4-9, 30-38; 129-130, 185, 171-172; 182
oral cavity 1:143; 4:143; 6:30
pulmonary 1:143
respiration 1:143
urinary, in 11:106-203; 14:177-189

Fluoride poisoning (cont.)
acute 1:102-103; 11:106-107; 12:76-84; 13:4-9, 30-38; 129-130, 185, 171-172; 182
oral cavity 1:143; 4:143; 6:30
pulmonary 1:143
respiration 1:143
urinary, in 11:106-203; 14:177-189
Fluorosis Antidotes in Pigs

Table 2

Percentage of Bone Trabeculae in Cancellous Bone

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
<td>31.8</td>
</tr>
<tr>
<td>II</td>
<td>0.5 mg NaF</td>
<td>37.0</td>
</tr>
<tr>
<td>III</td>
<td>5.0 mg NaF</td>
<td>29.9</td>
</tr>
<tr>
<td>IV</td>
<td>0.3 mg Borax</td>
<td>30.0</td>
</tr>
<tr>
<td>V</td>
<td>0.5 mg NaF + 0.3 mg Borax</td>
<td>32.5</td>
</tr>
<tr>
<td>VI</td>
<td>5.0 mg NaF + 3.0 mg Borax</td>
<td>32.7</td>
</tr>
<tr>
<td>VII</td>
<td>5.0 mg NaF + 6.75 mg metasilicate</td>
<td>31.4</td>
</tr>
<tr>
<td>VIII</td>
<td>5.0 mg NaF + 2.25 mg MgO</td>
<td>32.3</td>
</tr>
</tbody>
</table>

High fluoride ingestion resulted in slight enlargement of the thyroid gland and a reduction in height of the follicular cells. The results on the thyroid gland are preliminary and require further investigation.

Table 3

Parathyroid Activity

<table>
<thead>
<tr>
<th>Groups</th>
<th>Cut Faces of Nuclei μm^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control</td>
</tr>
<tr>
<td>II</td>
<td>1.5 mg NaF</td>
</tr>
<tr>
<td>III</td>
<td>18 mg Borax</td>
</tr>
<tr>
<td>IV</td>
<td>15 mg NaF + 18 mg Borax</td>
</tr>
<tr>
<td>V</td>
<td>15 mg NaF + 0.5 A_1 (Boric Acid)</td>
</tr>
<tr>
<td>VI</td>
<td>15 mg NaF + A_2 (Borax)</td>
</tr>
<tr>
<td>VII</td>
<td>15 mg NaF + 20 mg Vit. C</td>
</tr>
<tr>
<td>VIII</td>
<td>15 mg NaF + 1.25 g $Al_2(SO_4)_3$</td>
</tr>
</tbody>
</table>

Conclusion

Feeding 5 mg/kg NaF daily for a period of 1 year to pigs resulted in thicker cortices of long bones. On the other hand, in cancellous bone, osteopenia resulted. The effect of NaF on bone cortices could be reduced by
Dental fluorosis (cont.)
- in children: 186-87; 4:153;
- in adults: 6:183, 108
- in alveolar bone: 8:65
- in mandible: 10:21
- in incisors: 6:183
- in enamel: 6:183
- in dentin: 6:183

Diethyl fluoromide (DF): 15:48
- in urine: 7:150
- in saliva: 7:150
- in ameloblasts: 7:150
- in dentinal tubules: 7:150

Dimethyl sulfoxide (DMSO): 15:48
- in saliva: 7:150

Diurexia: 9:1-2

DNA: 15:117, 119, 121-122, 222
- in saliva: 7:150

Dental fluorosis: See Fluorosis, dental

Diabetes mellitus: 13:89, 143-144, 148-151

Enamel defects: 2:84, 2:244

Enamel (cont.)
- factory pollution from: 5:112;
- 12:102-103, 109-110

Excretion: 7:94-95; 8:12-24,
- 137, 141, 162, 176, 184,
- 10:45, 94, 167-173, 11:203;
- 12:15-8, 48-49, 72-75, 101,
- 165-166, 180-194, 214-215;
- 14:95

Exposure: 15:14-15

Exposure to fluorides: 6:6,
- 11, 252; 10:125-136; 14:51-55,
- 192; 151

Eye damage by fluorides: 7:172

Fat, dietary: 8:252; 10:92-93; 14:193

Fetal development: 7:171-72;
- 11:83, 84, 148, 191-4

Feces: 9:163
- fluoride in: 6:184

Fecal, fluoride in: 7:80

Fertility, fluoride on: 6:177,
- 66-67, 180-181

Fertilizer: 2:222-229, 229-235;
- 4:81, 101, 143; 7:221; 8:25-33

Feces: 9:31, 15:14
- porphyria rubra: 11:180-183; 15:60

Fiberglass, fluoride content: 7:221

Fibrinogen in fluorosis: 12:240

Filter: 6:173; 7:8-83; 11:168-76; 186-187,
- 13:103-115

Fish: 7:211; 5:83; 10:142;
- 13:70-75, 117-121; 14:115-118,
- 160-168

Florida, Hillsborough County: 5:146

Flowers: 4:30, 33

Flux, experimental exposure to: 3:160

Fluid intake in children: 3:14

Fluorine: 3:14

Fluorinated water: 5:229-232; 6:49-56,
- 57-63; 7:1-3, 47-52, 52-57, 146-152;
- 8:242-242, 10:142, 144; 12:52-54; 13:
- 139, 141, 168-169; 14:13, 14-21,
- 128, 144

Fluoridation: 6:53; 7:1-3, 146-152;
- 8:242-242, 10:142, 144; 12:52-54; 13:
- 139, 141, 168-169; 14:13, 14-21,
- 128, 144
Fluoride (cont.)

intoxication, acute
calcium in blood 11:143
case reports 11:39-40, 43-45; 13:147, 170-171
corrosions 5:107
diagnosis of 7:139; 11:143
diiuresis in 7:169
fluoracetamide, by 5:132
kidney changes, in 5:164
kidney functions in 7:169-171
litigation, regarding 11:162-165
magnesium in blood 11:106
oxalic acid excretion in 5:104, 164
pathology 3:81
poisoning center, at 11:43-45, 100-101
potassium in blood 11:105
sodium (serum), in 11:105
symptoms 3:83; 11:100-101; 13:41, 171-172
teflon, by 7:225-227
tests for 11:148-149
urinary, excretion in 11:209-210; 14:171-199
sub acute 12:49; 15:77
intracellular F concentration 9:193

Fluoride (cont.)

ionized 8:179-199
ionized chloride electrode, See Fluoride electrode
leaves 11:11, 41
leaves distribution in 6:73; 76-77; 9:149, 151
penetration into 9:148
levels in body tissues and excretions 11:123, 125; 12:127; 13:42
liver enzymes 12:85
magnetic resonance 4:15
malate dehydrogenase (MDH) inhibition 13:122-129
maximum normal 11:15, 18
mechanism of action 15:64-69
metabolism in 15:65
effect of aluminium on 14:95
effect of magnesium on 11:208
in Acacia aneurae 1:14
in animals 6:253; 12:132
in plants 7:183
in urine excretion 8:176; 12:15-8
in rats 7:27-75, 101, 167-166, 177-187, 188-192, 214
intoxication 4:102-108; 11:101-103
migration 15:148-149
monitoring for 7:133, 184, 188
mouth rinses 10:89-90, 110
mutagenic effect 8:47-50, 52-53
mutagenicity 12:213
osteoporosis, balance in 13:104-105
overfeed, accidental 13:139; 15:169-172
particulars 5:112, 114
13:105-113
peroxidation of tobacco 12:35
physiological, normal 1:15, 18
pines 12:11-15
placental transfer 8:251
platelets 9:173-184
poisoning, accidental 2:62-70; 6:254;
9:183-85; 13:139, 170-171
source of crippling, from tea 1:54
stores in earth 14:172
substrate, effects when in 1:138
supplements 8:55-56
symposium 11:109-110, 151-155
synergism 5:93, 170, 178
tables 8:55; 11:43, 210
therapy
biochemical data 5:232
bone biopsy 5:232
bone formation 5:232
combined with vit. D and calcium 5:231
creatinine 5:232
effect on vertebrae 5:230
fatality due to 14:55
fractures after 5:232
myeloma, of 5:230
osteoporosis, of 5:166, 162-169, 229-232; 10:43-44; 14:154
phosphorus excretion 5:233
potassium 1:165, 170-173
stomach 5:232
target organs 9:1
toxins, in 9:49, 52, 167
water related 1:194-195
weight loss 9:68
pollutant from aluminium smelting 6:127; 15:57
chemical plant 15:78
fertilizer manufacturing 15:57
glass manufacturing 15:57
polyphenoloxidase of tobacco 12:33
radioactive in rat 14:42
reaction to calcium in plants 15:144-149
reactivity 14:98
relation to SO2 5:93, 179
research 1:55
resorption 3:81-82
safe level for chickens 15:103
sampling
in environment 8:31-33
in maize 11:138
in soil 11:1-13, 16-28
sarcocline 12:111
school children affected by 15:78-81
sensitivity in plants 1:34-36
separation of gaseous F 5:84
silicium 8:33
skeletal 8:21
smelter 7:90
chronic 15:72

Fluoride (cont.)

poisoning (cont.)
alkaline phosphatase in 9:44
allergic reactions 9:36-41
12:76-84
bones, fluoride levels in 9:89
dermatitis 9:38
enzymes, in 9:12, 14, 16, 42, 44, 46
experimental 7:93-97; 8:134-143; 11:44
industrial 9:165, 170-173
mechanism 10:34-37
oral 9:38
target organs 9:1
teeth, in 9:49, 52, 167
water related 1:194-195
weight loss 9:68
Fluoride

toxicity (cont.)
genu valgum 15:1-3, 25-31
genu varum 15:1-30
See also, Fluoride intoxication, poisoning

translocation in plants 7:31-35, 133, 117-88
transmission to fetus 8:94
treatment 11:154; 13:96-87, 90
by animals 14:1-12, 50-53;
3:103, 53-55, 5:50-64, 76-84,
11:11-12, 8:226-240
by plants 1:21-26; 27-33,
34-36, 37, 38-40, 233,
2:20-21; 3:97-99; 31-33, 5:67-73,
7:197; 8:208-225, 224-240;

Fluorides, F content 14:70
Fluorocacetate
intoxication 5:132, 136
acetonase inhibition 5:22
alkaline phosphatase 4:73

Fluorine compounds (cont.)
contamination of samples 1:12-13
forms of 1:9-10
methods of preparation 1:11-12
solubility in soil 1:21-26
content in seepage water 1:23-26
inhalation exposure 3:160-161
oxygen mixture 3:161
pathology 3:161
tolerance to 3:160-161
toxicity of inorganic compounds 3:100

Fluorite F content 14:70

Cumulative Subject Index 1968 - 1982

Fluoroacetate
intoxication 5:132, 136
acetonase inhibition 5:22
alkaline phosphatase 4:73

Fluorine compounds (cont.)
contamination of samples 1:12-13
forms of 1:9-10
methods of preparation 1:11-12
solubility in soil 1:21-26
content in seepage water 1:23-26
inhalation exposure 3:160-161
oxygen mixture 3:161
pathology 3:161
tolerance to 3:160-161
toxicity of inorganic compounds 3:100

Fluorite F content 14:70

Cumulative Subject Index 1968 - 1982

Fluoroacetate
intoxication 5:132, 136
acetonase inhibition 5:22
alkaline phosphatase 4:73

Fluorine compounds (cont.)
contamination of samples 1:12-13
forms of 1:9-10
methods of preparation 1:11-12
solubility in soil 1:21-26
content in seepage water 1:23-26
inhalation exposure 3:160-161
oxygen mixture 3:161
pathology 3:161
tolerance to 3:160-161
toxicity of inorganic compounds 3:100

Fluorite F content 14:70

Cumulative Subject Index 1968 - 1982
Fluorosis

endemic (cont.)
pathologists 12:97, 189;
17:19-17
prognosis 13:25-29
proteins, serum 13:23
radiology 9:93, 95, 166-167
serum 9:28-98, 104
sex distribution of 6:15
skeletal changes 7:200, 9:71
symptoms 11:59-55, 12:206-213;
6:147, 88:12, 57, 82, 91-14,
5-8, 168-169; 12:40, 190-191;
13:84
ultrastructural changes 9:11-12
urinary fluoride excretion
6:10, 149; 12:72-75, 188-194
endemic in
adults 3:208, 6:6
arthritis 9:2, 19-23
calcium diet 6:143
children 5:6, 154-154; 9:94
economic status 6:13, 15
guinea pigs 9:167-168
India 1:54, 65-75, 76-85;
2:200-205; 3:208; 6:64-67;
8:19, 106-133, 185-200;
Italy 1:113-116
Kisla, Cen. 13:81-85
musculation 9:9-18
Raham 1:84-93
Sri Lanka (formerly Ceylon)
Turkey 13:81-85
endemic, treatment with
bone meal 9:101
calcium 9:99
serum 9:104
vitamin C 9:167
enzymes 4:173, 14:41, 116,
156-157
epidemiology 6:11, 171, 86, 182
epithelial cartilage 4:180-181
erythrocytes 4:165
Etiopia 12:164
exocytosis 6:6, 11, 252;
10:125-126
experimental
acarinate hydrate (cows)
11:14-17
adrenals 12:65-71, 13:4-9, 88-89
Fluorosis experimental (cont.)
anti-dotes for F (rabbits)
11:157-161
bones, F content 14:56-61
boron 13:30-38, 129-138;
17:19
ascorbic acid 9:21-23
cardiovascular changes (rats)
11:113
cholesterol 14:116-118, 193
chromatic aberrations (cows)
11:37-38
citrate (cows) 11:14-17
collage 14:90
copper excretion 14:107-111
cyclo AMP 6:190; 13:145
dental changes 14:183-184
electrophoresis, serum
13:20-24
enzymes 12:84-91
F, anesthetics 13:148
F distribution 14:142
F effect on liver 12:72-76
F excretion 12:177-181
F intoxication (pig) 11:14-17
See also, correction
11:155
F retention 12:107-108
fluorodesmin 6-8:14-91
hepatitis 18:146
history 8:168
hydroxyproline 14:20
hyperglycaemia 13:88-89
iron 14:107-111
kidney enzymes (rats)
11:112-113
leucocytes 14:97, 101
lipids (serum) 14:193
13:12-13, 23, 35,
159, 149, 119-123
non-skeletal 11:11-114
osteopenia, effect on F
11:152
parathyroid glands 12:84-85,
124-128
parathyroid hormone 13:18
phosphatase 5:1
platelets 5:53
proteins 11:25-28, 14:186
pyrophosphatase 8:179
renal failure in 6:64-65
renal plasma flow 5:49
renin (rats) 11:113
RNA 14:197, 185

India, endemic, See Fluorosis,
skeletal
histology 18:183-188
Japan, endemic, See Fluorosis,
location 15:52
mollating 15:70-106
occurrence 4:66-104,
152-153, 154-166; 12:164
opacity with pitting 15:73
Sahara, endemic 1:86-87
severe cases 15:74
tea, role of 15:74
Ukrainian communities, in
19:44-85
diabetes insipidus, in 8:117-118
diagnosis 1:122; 4:43; 12:3-4, 25
9:19, 195-208; 14:1-3, 71-73, 153
EDTA 4:43
EKG changes 4:164, 195; 14:165
endemic
age-related 6:10
balance studies 9:138-147
calcium balance 6:149, 199
calcium excretion 1:187
complications 6:13
dental, See Fluorosis,
dental
endemic effects 7:208-219
exotoxin 6:6, 252
factors modifying 6:7, 9
genu valgum 9:20, 185-200
heart 9:18
histology 9:95-96
incidence of teeth 9:95
industrial 12:41-42; 13:52
injection of fluoride 9:140, 144
joints 9:21
kidneys 6:18, 64-65; 9:33-35;
12:50
laboratory data 6:149
metabolism in pregnancy 12:158-64
fluorosis experimental (cont.)
soft tissue 11:125-126
tryptophan metabolism
14:155-160
urinary ions (rats) 11:106-107
vitamin E 14:193
x-rays (rabbits) 11:101-102
experimental in
acid phosphatase 5:31
alkaline phosphatase 5:30;
13:19
anemia 5:35
annual growth layers in bones
5:196
blood picture 5:33, 36
bone 8:118, 173
bone changes 5:25, 187
bone marrow changes 5:37-38
creatinine 5:47
dogs 14:146
fluoride levels in bones
5:188
fish 13:70-75, 112-121
fowl 12:105
glycogen 5:39
heart, muscle 5:39
hemostasis 12:136-143
kidney function 5:48, 50
liver 5:39
mice 9:48, 63
milk production 11:161-162
muscle fatigue 5:44
non-protein nitrogen 5:47
necrosis 13:187
oxygen consumption (fish)
13:18, 121
placental transfer of F
13:143
quail 8:168
rabbits 10:82-86
rats 10:185-186, 147
teeth 9:49, 52
fluid uptake in 10:168
fractures, spontaneous 4:119
gastric acidity in 5:311-118
ulcers in 12:50, 169
gastro-intestinal 16:19-74
Germany, in 8:61-85
Fluorosis

industrial (cont.)
phosphorus 12:210-214
post-occupational 14:61-68
pulmonary disease in 9:165
radiographs 15:107-108
renal fluoride excretion 12:48-49
spinal cord, in 9:30-32
symptomatology 10:127;
12:209; 14:12-181

treatment 12:215
x-ray findings 14:178

ingestion in 9:140
Italy, in 4:104
Japan, in 4:179
joints 10:127, 132
kidney stones 8:3, 37; 13:14
kneads 4:72
laboratory findings 1:91, 146
leucopenia 4:163
macrocytic anemia 4:163
magnesium 8:17
maize, in 11:18-24, 129-135
manifestations 8:10, 62
Morocco, in 8:104
mottled enamel classification 5:31
See, also, Dental
fluorosis
myocardial damage 4:164, 197, 205
neighborhood 1:54; 2:203, 206-213; 4:106; 10:144-46, 89
neurological changes 8:73
manifestations 1:72
new observations on 1:58-55
nonskeletal 9:5-8; 10:131; 13:91, 93
occupational See aluminum,
welding, phosphate fertilizer
osteomalacia from 1:54
osteoporosis 4:42, 68
osteoporosis, from 1:54, 62-64;
4:164, 180, 184, 193; 8:84
parathyroid 4:74; 12:12-128
peridontal disease 4:101
perplegia from 1:54
perspiration 4:86
phosphorus 8:112

Fluorine (cont.)
preskeletal 4:150, 10:165-169; 11:
111-114; 12:102-103, 169-171
prevention of 5:76; 9:215
psychopharmacology 14:187
protein electrophoresis 4:143
quadriplegia from 1:54
rabbit 10:8-82
radiological changes 1:56-64, 68-79;
15:107-108
research on 1:54
reversibility 8:73, 78
rheumatoid changes 1:54
Saginaw, Michigan, in 13:168
Sahara 1:86-93
sarcopenia treatment 8:144
skeletal
adrenal hormones 5:218
adults, in 1:55-75, 76-85,
87-91, 91, 117-118; 2:120-124;
3:208; 8:61-85
Algeria, in 11:99-103
alkaline phosphatase 2:123;
5:121, 127, 13:19, 132
antibodies 11:157-161
arthritis 2:123; 5:209-210, 227
autopsies, in 3:209
bone apatites 11:151
bone biopsies 4:116; 5:117
bone changes 1:29-32, 46-54,
102, 151, 153, 158
bone composition 5:122
bone density 11:37, 151
bone, F distribution in 11:153
bone histology 7:212
bone pathological, in 3:170,
172-174
bone porosis 11:120
borean, effect on 11:158
calcification of vas deferens
5:186
calcitonin, in 11:15-119
calcium 5:121, 24; 129, 165
3:36, 56
calcium infusions 4:104-105;
11:156-170
capillary sprouts 3:172
cattle 7:111, 135-142; 14:169-171
cervical spine, in 3:92
changes, in 9:71-72
children, in 5:31, 222, 128-129;
6:143-151
China 14:52, 91-93

Fluorspar

skeletal (cont.)
cholesterol, in 2:123;
7:210, 213, 215, 218
chromosome aberrations 11:37;
156
citrionic acid in soft tissues
11:15-16
clinical findings 7:204
cremation clearance, in 7:204
dental x-rays 7:205
diagnosis 4:69; 11:171
dialysis, fluoridated,
correlated with 4:114-128;
14:49
diet 5:125; 14:49-50, 51-55;
56, 91-93
drugs, due to 14:50; 15:54-56
electrocardiogram 7:215
electroencephalogram, in 11:33-
36
endemic 7:200; 9:71
England, in 11:179-180
epistaenia, in 11:133
exostoses 4:69, 126
fibrous foci 5:183, 186
glycoproteins 14:150-153
histology 5:115, 117, 183
hydroxyproline, urinary
11:120-124
Iceland, in 5:58
illiac crest biopsy 7:202, 212;
14:10-13
incidence 1:71; 4:67-70
India, in 1:55-75, 76-85;
2:105-106, 208; 7:200;
11:109-110; 14:69-74
industrial 2:120-124; 10:91-92
(20:100)
industrial vs. endemic 11:29-32
iron, effect in 11:158
kidney function in 11:103
lute effect 1:46-68
magnesium in 5:45
measurements of bone changes
11:46-54, 151
microangiography 3:168-174,
176, 205, 208
Morocco, in 14:169-171
musculature in 7:178
muscle biopsy, in 14:94-95
nervous system, in 14:92
neurological disturbances
4:104
Fluorosis (cont.)
- skeletal (cont.)
 osteomalacia 7:155; 15:21
 osteoporosis 15:21
 osteoporosis in 4:193; 11:120
 osteosclerotic 15:21
 osteosclerotic changes in 4:42
 parathyroid hormone 5:117
 parathyroid hormone 7:204; 11:119-121
 pathogenesis 11:116-118, 123
 phosphate clearance 7:210
 phosphorus in 5:121, 216, 221
 plasma fluoride in 11:115-119
 pyelonephritis 3:208
 radiological changes in 7:210
 radiological findings 5:62, 87, 117; 9:91-98
 rats, in 4:162
 relation to F- in water 4:158
 reversibility 7:62
 Sahara, in 1:27-29
 sampling of specimens 3:174
 sea salt contributing to 5:15
 serum calcium 11:169; 2:123
 serum electrophoresis 11:25-26
 serum fluoride 11:121
 sheep, in 5:61-62
 susceptibility to 5:50
 tea consumption, from 1:168; 5:210-211; 14:49, 92
 Texas, in 14:49
 thyroid hormones in 5:212
 treatment 2:142-152; 8:145-154
 urinary calcium, phosphorus 2:123; 11:169; 14:61-68
 urinary fluoride 7:204; 14:61-68, 91
 USSR, in 14:184
 van der Graaf, calcification in 5:67
 vitamin C 5:125
 x-rays in 2:123, 11:46-54; 14:51-54
 soil, from 11:18-28, 77

Fluoroscope (fluoroscope) (cont.)
 humans, effect on 2:137; 5:169
 mine dust, in 2:137; 5:169
 mines
 - Bingham, growth 9:156, 178
 - soil contamination 11:177, 179
 waste composition 9:155; 11:179-185
 wastes 9:153-162
 production 2:17-28

Fluoroper (fluoroper) (cont.)
 used in aerosol propellants 15:57
 fluoride compounds 15:57
 urea 15:67
 Fluoroccum acids 15:51
 Fluorophane 5:107; 6:43-44
 Flyash, fluoride in 5:111-114
 Flyhurt, effect on nose 6:109
 Forgace, fluoride contaminated 4:23-24; 5:111-114
 Fomate 5:109; 6:44
 Forester's syndrome 15:108
 Fossak barberi 7:187
 Fractures 3:164; 14:177
 Fremos 4:41; 8:121
 Fractures 3:192-200; 4:25-29
 Fraction
 - juice, fluoride content 10:187-188; 14:183
 - trees, fluoride in 4:21-23
 - Purse in fluoride 14:152
 - Fujiwara reaction 5:17
 Fundic
 - of Drosophila 3:192-200
 - with fluoride 3:160
 - hydropon fluoride 3:40; 66
 - 5:168, 68, 146
 - sulphur fluoride 3:165-91
 Funduscopy in NaF-induced retinitis 3:115
 Gallium fluoride poisoning 6:254
 Gallus domesticus, F- in eggs 11:199-205
 Gabes 5:157-159, 161
 Gamma-Glutamyltranspeptidase 15:159
 Gastricobulin 13:23, 155
 Gaseous fluorochemicals, See Fluorochemicals
 Gastric ulcer 10:131, 149-151; 12:150, 169
 Gastric-intestinal symptoms, See Fluorosis, symptoms
 Generator for fumigation 5:18
 Genetic effects of F- 4:25
 Genus vulgatus 9:185-200; 13:49;
 15:81-87
 Geology in high F- districts 8:160

Geranium (Pelargonium zonale) 15:145-146
Gianella 5:154
Gibbula See Dicapetala
Glass, etched by F- 3:63
Globulin 4:43
Glycocalyx filtration rate 5:50
Glucose
 fluoride-treated fish, in 13:73; 14:116
 - phosphatase 12:84-91
 phosphoglycerate 13:159
 serum 6:235-236
 B-glucuronidase 15:10, 7
 Glutamate
 oxaloacetaat transaminase 8:138; 14, 140-141; 9:42-46; 14:132-141
 Glutamic acid 15:162
 Glutamine 15:162
 Glycogen 6:235-237, 281
 Glycogen 15:12
 Glycogenolysis 15:192-202
 Goiter 4:77; 6:119-120; 8:34-38, 191-198
 Gordon, C.C. obituary 14:196-197
 Gray's plot 4:54
 Grand Rapids, Mich. 5:122
 Granulocytes 15:9-13
 Grass, fluoride content 6:130-131
 Greenhouse production 5:18, 68, 146
 Ground water See Fluorosis, water constituents
 Growth inhibition 3:38, 107
 of bones 4:161, 184
 of children 4:159; 5:31
 of plants 11:54-56
 of rats 4:161
 Retardation 6:26; 11:57-58
 Guinea pig 14:193; 15:157-161
 Guilin (China), Fluorosis in 14:49-50, 51-55
Cumulative Subject Index 1968 - 1982

Insect
affected by F* 10:14-21; 11:198
egg exposed to fluoride 3:66; 6:18; 172

Intake, fluoride See Fluoride
in food and Fluoride in water

Interference in F* analysis 4:49; 57
International Joint Commission 4:93

Intoxication by fluoride. See Fluoride intoxication, intoxication acute and
intoxication chronic

Inversions 7:186; 195

Iodide
histidine 15:51
sulfenyl 15:51
tyrosine 15:51

Iodine
Interaction with fluoride 3:36
uptake of radioactive iodine
8:191-198
Ion selective (F*) electrode
15:15; 21, 27, 31, 32, 36; 45; 59, 65, 79, 89-91; 99, 111;
125, 137

Ion selective electrode See Fluoride electrode

Ionic plasma fluoride 7:143-146; 14:
4:9; 15:35-42, 44

Iodinated fluoride, in plasma
7:143-146

Iron 3:52; 14; 87-112

Iron sintering plant (in Sweden)
15:124

Isocitric dehydrogenase 9:42-46; 11:111

JAMA editorial 12:56

Joints 9:17; 192

Jugular veins 15:98

Juniper 7:7-31, 187, 193-194; 107

Juniperus communis (Rocky Mt.
Juniper) 7:7-31, 167, 193-194; 197

Kaschin-Beck disease 2:128-131;

4:187

Kenilworth disease 1:119-121; 9:72

Ketone 6:232-233

Kidney
changes, fluoride-induced 11:112; 152
citrulline, low 11:15-16
damage 5:103
enzyme changes by fluoride 12:84-91
fluoracetate, effect on 12:119
fluorosis in 12:30, 101, 177, 214
function in fluoride 5:46-48; 6:18, 66;
9:33-35; 14:96, 141
halothane anesthesia 6:121
intoxication, fluoride 7:96-97
methoxyfluoranthrene 8:38-39

history 13:164-166
pathology 5:48, 51-53
poisoning 15:56-57
history in acute 7:171
niasin 3:183-185
renal osteodystrophy 4:114-126
stones 4:72, 150; 13:1-3, 10-16, 41-42
Kiruna, Sweden 15:125

Kilimanjaro, Tanzania 13:81-85

Koosagau, New South Wales, air
contamination 14:195

Korkeakyla, Finland 15:150

Laboratory
data on fluorosis 2:51-54;
6:147
tests 1:99; 14:11

Lactate
dehydrogenase 8:140; 9:44,
176; 14:115-118, 132-141;
153; 15:6; 48
fluoracetate, effect on 6:229,
234

Lactation, fluoride during
7:143-146

Lake St. Clair F* pollution 4:93
La Soufrière (volcano) 10:155
Latent fluorosis 5:69
L-cystine 11:160
Lead 15:57
mutagenicity 12:213; 13:87-88
organic, compared to organo-
fluorides 6:285; 247

Leaf
damage 4:31-32, 38
movement in 9:149-152
necrosis 8:90
search for 4:31-32
"Lethal Synthesis" 6:191, 204
Leucocytes 5:35-37; 11:37, 156; 13:
87, 120; 14:96; 15:119-123
Leucosyphilis 4:89

Lichens as fluoride monitors
7:128

Lime sprays 5:147

Lithium fluoride 15:50

Liver
content of fluoride 3:190

damage after halothane anesthesia
5:103-105
by fluoride 2:140-141; 3:80,
82, 181-187; 10:42; 14:119-123
Cytochrome P450 14:185
cyclic AMP 14:185
enzyme changes by fluoride 5:38-39;
12:84-91; 14:132-141
function in fluorosis 11:27-28;
12:172-176; 13:195
history, cancer 11:123
radiofluoride distribution 14:42
response to fluoride 12:172-176;
14:199, 107-112, 115

Lobolly pine, (Pinus taeda L.)
15:14-20

Lodgepole pine 7:187; 10:14-21
London, England 13:100-104

Lucky, India 8:155, 157

Lumpy jaw 9:76

Lung
neoplasms 5:169, 172
neoplasms 5:169; 172
neoplasms 3:185
edema in F* poisoning 12:82

Lupine 14:30-38

Lysozyme 15:6, 7

Lysosomes 15:6, 7

Macaques 4:106

Magnesium
affected by F* in plants 11:68;
14:142

analysis, method of 7:113
balance following F* intake
5:218-219, 218; 11:104-105,
208; 13:14

dietary 2:186-188; 5:214;
14:142

Manganese
interaction with F* 3:40-52
uptake, affected by F* 11:70

Massachusetts, study on mongolian
8:46

Mast cells (rat) 15:50

Maximum allowable F* accumulation
in forage 7:17

McCann method for fluoride
content 15:54

Mechanism of damage by HF 5:72-73

Medicago sativa (alfalfa) 7:11; 15,
20, 24-26

Methylcobalamin in bone marrow 7:66
Menopause, F* release in 10:147

Metabolism
aluminum ingestion, influence
upon 15:107, 108
blood, selenium albumin in 2:91-
96, 135, 235
fluoride 2:91-96, 135, 235

transport 2:91-96, 135, 235

urinary fluoride excretion
12:5-8; 48, 72-75, 165-166, 190
Osteoporosis (cont.)
alkaline phosphatase 3:209
animals, in 9:213-214; 10:76-77;
18:82-86
bone
kinetic studies 7:109
phosphorus ratio 3:205

densitometry, in 3:205
experimental 3:204; 5:118-119
fluoride-induced 5:125-127; 9:213;
12:110; 13:144
induction 3:205; 11:211-214
micronadiagram 3:167-174, 206,
plasma fluoride 10:44
symposium 7:65-67
treatment of 2:125-127; 3:164-166,
209, 211; 5:90, 126, 231; 6:118-119,
123-126; 7:65-67, 105-108,
109-110, 10.143; 11:153-154;
12:113-115, 13:144
Osteomalacia 1:71, 62-64, 68,
87, 91, 93-96, 213; 101, 115, 118,
121, 122; 4:8; 5:111-117, 197;
5:1, 22-23, 26-27, 86
Osteoporosis, F effect 11:153
Osteoporosis 8:115
Osteoporosis 11:151, 153

treatment 15:169-172
Oxalate poisoning, methoxy-
fluoride, in 5:39; 6:46
Oxidase system, mixed function
15:132-136
Oxiredoxanet 13:222
Oxygen consumption, affected by F:
12:173-176
Ozone
deposition 8:123-124
effect on plants 6:37-38;
11:55-59
Pap's disease, blood flow in
11:152
Pectin development and fluoride
6:185-186; 8:51
Policarea margaefi 6:204
Paradoxical effect of F 3:205
Parathyroid
denom 7:205
extract 2:106
function in fluoride 4:78; 5:116;
7:200-208, 208-219; 9:115-
119; 12:84-91, 128-128
Parathyroid function (cont.)
tests 1:874; 7:209-210; 9:97;
18:117-119; 15:208-214
Parathyroid hormone 2:24-26, 13:182
Parathyroid hormone 6:183; 7:165, 204, 205;
11:154; 13:43
Parathyroid gland 13:169; 13:150

diagnosis 10:44, 206
Parathyroid, F content 11:210

Phosphate
Fertilizer (cont.)
gypsum pond 2:101-104
minerals, causing fluorosis
12:100-102
rock 2:8-9, 3:36; 14:70
uptake in potatoes 8:211, 217-218
supplements 3:36; 13:57-64
Phosphates
Inorganic 6:116, 150, 158,
238; 4:161-168
labels 5:156
serum 4:74-75, 11:168-169
urinary 13:14
Phosphatemia 15:157-158, 161
in fluorosis 11:107
Phosphocreatine 7:257
Phosphohydrolase 6:214
Phosphorylase, F content 14:166
Phosphoric acid, manufacture
8:26-28, 35
Phosphorus
F effect on uptake in
7:203, 10:80
diet 5:231
F in needles 7:206-7, 73
fluorosis 11:169
NaS2Fe3O4, poisoning 8:139
plasma 5:216; 7:204-205, 210
interaction with F 3:37, 189, 205
intermediates in platelets
9:177
renal reabsorption 11:102
urinary, in fluorosis 8:18
Phosphorylase 5:48
Phosphorylation 15:51
Phosphorylation 1:16
Phosphorylation 12:18-27
Phosphorelase 15:149-156
Phosphomycin 4:28; 5:154-155;
11:91-96, 172; 15:149-156
Phytase in needles 6:170-173
Plant
damage by fluoride 5:127-137;
9:63-70; 10:14-21, 47-59;
11:137-141, 198, 211; 12:9-17
infection by insects 6:135-
136; 10:14-21
concentration of fluoride, in
8:154
concentration of fluoride, in
8:154
toxicity of fluoride, in
8:154
transfur of fluoride, through
8:178, 214; 12:156, 58; 63; 13:14
Plant, generator for fumigating
5:18
Plants (green)
fluoride
effect on water balance of
1:39-40
injury from industrial opera-
tions 1:21-24, 11:170-178
transfur of fluoride, through
8:178, 214; 12:156, 58; 63; 13:14
Plants
concentration of fluoride, in
8:154
fluoride
effect on water balance of
1:39-40
injury from industrial opera-
tions 1:21-24, 11:170-178
transfur of fluoride, through
8:178, 214; 12:156, 58; 63; 13:14
poisonous See Poisonous
plants
protection by water 13:46
Plaque, artificial prevention
7:57-58
Plasma
alkaline phosphatase 1:42-43
chemical profile 1:151-159
as a fluoride 11:115-119, 152, 154;
14:46-48, 42-43, 116, 145
urea clearance 5:48-50
Platelet function 2:161-162, 241-242
Platelets 5:35; 9:173-184
Podhora, Poland 15:79-80
Pollen 3:18
Acacia georgianica 1:9, 13;
7:136; 9:204, 209
Dichapetalum 1:9, 13; 3:47;
7:136; 9:204
Gastrolobium grandiflorum 1:9;
7:136
Palicourea maragai 6:204;
7:136
Pollen, fluoride content 7:221
Polydisperse 7:96; 8:118
Polymerase chain reaction 7:226-227
Polyphosphonucleic acid 15:51
Polyamines, disintegration by F
11:55-56
Cumulative Subject Index 1968 - 1982

Sodium
fluoride (cont.)
application, topical, to bone 3; 106
effect on bone marrow 5; 37-38
effect on digestion 5; 200-209
effect on electrolytes 3; 187
effect on retia 3; 114-120, 210
effect on RNA 3; 153
effect on testis 4; 167
effect on urinary iron excretion 11; 106-107; 13; 148-151
effect on vision 15; 221
fish, in 13; 73
intoxication, acute 6; 68-69
mouth rinses 9; 118-216; 10; 90, 94
mutagenic effects 6; 113-117, 8; 52-53
plant parts, uptake of 9; 204-212
poisoning 6; 68-69; 7; 138
serum 13; 16, 150
treatment of osteoporosis 7; 66
fluorosilicate 1; 110, 123; 8; 83-139
interaction with F 3; 190
monofluoroacetate 9; 204-212 (on 10; 45)
silicofluoride poisoning, acute 10; 38
suicide, poisoning 3; 80-84
Soft tissue
F content 3; 190; 14; 99-100
protein 11; 125-128
Soil F in 1; 212-26, 30; 2; 29-30, 4; 73, 80; 5; 112; 9; 162;
11; 103; 13; 124; 14; 54
Sorex araneus (common shrew)
15; 56-63
South Africa 15; 58
Soy bean, fumigated 5; 67
Specific gravity, affecting F assays 14; 75-86
Specific ion electrode See Fluoride electrode
Spectrophotometer, Hitachi 15; 133
Spermato genesis 14; 189
Spinach, F content 12; 54
Spinal cord 9; 30-32
Spondylitis, in fluorosis 14; 53
Stack gases, F in 4; 55
Sri Lanka (formerly Ceylon) 13; 138
Stannous fluoride
diffusion from amalgam 10; 180-186
inflammation from 2; 132-133
mouturines 10; 90
mutagenic effect 6; 113-117
Statistics, dental caries 3; 71-79
Steel
dust, fluoride content 7; 221
mills, F emission 5; 176, 178-179
production 8; 225
smelting 5; 178
Steroid, fluorinated 8; 174
Stoke-on-Trent, England, F
pollution 14; 47
Stomach
fluoride effect on emptying of 7; 225
in F poisoning 3; 81
Stomatitis 11; 183, 101
Stones, kidney. See Kidney stones
Streptococcos mutans, growth of 15; 53
Stylistic froce, F in eggs 11; 204
Strychnine poisoning 12; 77
Submandibular salivary gland 15; 50
Sucinic dehydrogenase 15; 51
F on 2; 168-175; 9; 12-18;
11; 111-122; 12; 111; 14; 132-141
Sugar in tobacco 13; 140-141
Sulfur hexafluoride gas 15; 3, 43, 221
Sulfur oxides 3; 139-141; 5; 179;
6; 35; 7; 174-175, 223; 10; 156;
11; 170, 178, 221
Sulfuric acid manufacture 8; 25-26
Sulphuric fluoride 3; 85-91
Sundall, Norway, F pollution 11; 198
Superoxide production 15; 4, 8-11
Superphosphates in soil 4; 31-33
Surf bmg, biopsy 14; 94
Survey 4; 67
Switzerland
Helmholz 11; 198-200, 204
Nyon 11; 151-155
Valais 11; 198-200
Syndrome
Hyderabad, India 11; 109-110
Symposium
Nyon, Switzerland 11; 151-155
Synovia, F induced 13; 186
Synthes 13; 144
Syringomyelia 1; 78
Tadpole 4; 169-170, 187
Takamoto 5; 1
Tar, effect on leaves 6; 77
Target organs 9; 1-4
Tarumzeg sulfur basin (Poland) 11; 170-178
Tea
consumption by Canadian Indians 10; 137-141
by children 3; 15
in England 12; 163; 14; 49
in United Kingdom 3; 15
effect on kidney function 10; 147, 148
urinary fluoride 12; 209-210
fluoride content 10; 137-138,
180; 193; 15; 156
Teeth See also Dental and Fluorosis, dental
air pollution, effect on 10; 93
brown 4; 157
brushing 4; 62;
calcium content 8; 116
carry
in Bukh Province (Ukraine) 14; 44-45
in Holland 6; 49-56, 57-63
in India 8; 161
in Japan 6; 188, 248-251
prevention 6; 188; 8; 55;
14; 123-128
related to fluoride content of water 6; 188, 248-251;
9; 12-126, 163-164; 14; 123-128
(education 15; 49)
children's 1; 86-87; 14; 44-45
decay 6; 57-63; 7; 57-58
deciduous 1; 87
dentine, developing, in humans 15; 107
electromyogram 4; 60
enamel 4; 58-63, 65-67; 7; 57,
166; 9; 124-125, 163, 166, 217;
11; 4-13; 15; 107
enamel 8; 157, 162; 11; 6
fluoride content 4; 72; 9; 163, 166;
11; 7-10; 14; 192
Teeth fluoride (cont.)
diffusion from amalgam 10; 174-181
general application 5; 167
uptake 9; 217; 11; 4-13
fluorosis
endemic 6; 109, 111; 18; 58,
45, 123-128
experimental 5; 154
x-rays 7; 205
fluorotic 15; 131
primary 15; 131
permanent 15; 131
hypercementosis, periapical 9; 91, 95
incisors, rats 15; 107
lactobacillus 4; 174
loss of 6; 5
mechanism of fluoride action 11; 4-13
mineral aspects 15; 164
molting 5; 129; 8; 156, 157;
9; 191; 13; 50; 15; 52
mouthwash 9; 216
peridontal disease 4; 101
ph of beverages, effect on 14; 129-131
root defects 4; 67
toothpaste 9; 120-121; 10; 39,
41, 143; 13; 172-173
Turner 15; 157
white lines 4; 157
Teflon 6; 101; 7; 222-227 (on 8; 57)
Telespecifica 8; 174; 10; 150
Temporal bone in fluorosis 10; 86-86
Testes 13; 160-162
Tests for F poisoning 11; 100
Therapy 14; 55, 154
Thorium nitrate titration 1; 80
Threshold limits for F 3; 53-60, 188
Thrombocytes, expansion 2; 241-242
Thymus gland, F poisoning 12; 100
Thyroid
diabetes 8; 192; 14; 143
fluoride content in 4; 71
effect on 21; 192-194; 9; 105-105
function in fluorosis 2; 195-200; 4; 71, 74-75, 7; 212; 12; 101;
210; 14; 143
Thyroid (cont.)
goose in fluorosis 2:200-205
hormone 8:191-197
Thyroidectomized animals, F†
effect 11:118
Thyroglobulin, antibody in F†
poisoning 12:101
Tibial bone fragment 15:54
Tiel (Holland), carcass incidence 6:149-50, 57-63
TISAB (total ionic strength buffer) 8:136; 10:12; 14:77;
15:89, 91
Tissue
animal, experimental 2:35
fluoride in 2:20, 214
ph, effect on 13:90
protein 11:125-129
Toad eggs 4:167
Toxicity
fluoride content 6:173, 7:72-73, 221; 13:140-141
Tolerance to fluoride 3:160-161;
13:46-48
Tooth enamel, developing 15:64-69
Toothpaste, F† content 10:39, 40, 143
13:172-173
Topaz, F† content 14:70
Topical administration of fluoride 7:145
Total F† determination methods
Calcination 15:90
microdiffusion 15:90
selective electrode readings 15:90
Toxemia of pregnancy, plasma
fluoride 7:145
Toxicity See Fluoride poisoning
Toxicity of inhalation
anesthetics (book review) 15:163
Trace elements 13:49-57, 15:25-31, 81-87
Trachea, F† uptake 14:42
Tranexaminases in F-treated fish
14:115-118
Translocation of fluoride, in
woody plants 7:31-35
Treatment with fluoride See cataplasms, growth inhibition by F†
Treatments, growth inhibition by F† 3:138, 142
Triamcinolone acetonide 8:174-175
Trilubrinase, sensitive to F†
2:134
Tricarboxylic acid cycle 3:102;
6:194, 196-197, 224-228, 232,
240, 242; 12:114-115
Trichloromethane 7:177-92
Trifluoroacetic acid 5:13, 107-
108; 6:44
Triglycerides, serum 8:114
Triglycerides, superphosphate 8:28-29
Tropolonil 12:112
Trots, F† in 2:71
Cryptotophyllum mediterraneum 14:155-166
T-tet, T-tet 15:114, 16, 112
Tulip, F† effect on 12:36-36
Turkey, fluorosis 12:105
Tunisia (Gobi desert) 14:161-168
Turner's test 4:43
Twin 15:105
Tyo alba (owl) 11:199
Uchiomaki Hot Springs (Japan)
4:158
Ulcera 1:99
Ultraviolet light changes in bone 9:127-138
muscle 9:10
Uracil 15:48-49, 222
Uranium enrichment UF6 15:14-20
Urea, clearance in fluorescence 9:34-35
Urea 10:22-26
Urinary See also, Fluoride
excretion
citrate 7:39
creatinine 7:30, 42, 204
fluoride 15:49, 87, 109
fluoride excretion 4:3, 87; 8:19,
176, 198; 9:144; 11:106, 162, 208
12:72-75, 177-182, 188-194;
13:145; 14:149-149
hydroxyproline 7:41; 15:137-
143
inconvenience 1:98
Urine
affected by fluoride 1:91; 2:121, 123; 13:16
calcium 13:11, 2, 3-14
cyclic AMP excretion 14:145
F†, diagnostic value 14:12,
187-189
in kidney disease 14:96
of welders, fluoride in 2:17-
18, 22; 4:100
output in children 13:95
Urictaria 1:98; 9:37, 39; 10:1
U.S.S.R., industrial fluorosis
12:209
Valais, Switzerland, F† pollution
in 11:198-200
Varanasi, India, fluorosis
14:85-90
Vasa de Feberia 5:86-88
Vegetables See Fluoride, content of foods
Vegetation. See Fluoride, content of plants
Venice, F† in marine animals
14:102-107
Ventosa, fluorosis 15:87
Vicia fava seeds 6:158-160;
11:189-99
Vigna sinensis, HF effect on
4:32
Vikane 3:85
Visceral in fluorosis 4:71
Vitamin C 9:167; 11:60-67, 160;
12:65-71, 111, 144, 14:187
kidney, synthesis of 15:102
increased levels 15:103
in tissue 15:97-104
D 2:106; 5:231; 6:252; 15:12
D 2:120
F† 15:103
Vitamins
deficiency of 12:63
diet, in 5:81
Vivace, F† emission from Mt. Asa
4:172, Mt. Ptna 10:152-156
Waldbot, G.L. obituary 15:165-168
Water
fluoridated 5:229-232; 5:49,
56, 57:53; 7:1-3, 47-52, 52-
57, 145-152, 154; 14:149-149
fluoride in 3:12, 7, 22-26, 41-
42, 153, 154; 4:64-79, 151;
1:88; 9:201-203, 14:49-50,
51, 73, 102, 151, 26, 30,
39, 37, 43-44, 46, 50, 53,
70, 81, 88, 93-94, 106, 110, 119
carried related to 6:88,
248-251; 9:128-126, 163-
164; 14:123-128
Intake 8:160
treatment 9:102
Welders 2:13-18, 22; 4:98-100
Welding 2:13-24
When
fluoride content 4:23
effect on 3:140
roots 3:107-108
Where
grass
bluebunch 7:187-189, 197
created 6:203-215; 7:10-15,
22-23, 187-189, 11-14
Juniper, fluoride content
similar to 7:193-194, 197
Wild animals, F† in 9:73-90;
11:199
Wild birds 11:198-207
Millard and winter procedure 3:6
Willing 11:187
Windsor, Ontario, fluorosis
13:168
Wood, fluoride content of 7:221
Wood-Morris reaction 13:122
Woodland fluoride ground stores
14:72
X-rays in fluorosis
bone 7:201
dental 7:205
hand 7:212, 214
Zantoglo, P.E. obituary 15:109
Zea mays (corn) 11:129-135
Zinc 1557, 41-67
amount 1551
food in 13:55
protective in fluorosis 13:49-57
waterborne 9:197

Acknowledgement

This cumulative index was prepared using annual volumes of FLUORIDE through volunteer efforts of Dr. Alice Denney and Dr.
Gene W. Miller, Utah Agriculural Experiment Station, Utah State
University. Thanks are also extended to Barbara Adams, Vivian
Johnson, Barbara Leishman, Scott Barber and Kayleen Hansen of
the Biology Department, Utah State University for their assistance
in typing and proofreading.