FLUORIDE

OFFICIAL QUARTERLY JOURNAL
OF
INTERNATIONAL
SOCIETY for
FLUORIDE
RESEARCH
President
Prof. A.K. Susheela
All India Inst. of Medical Science
New Delhi, India

Second Vice-President
Ming-Ho Yu, Professor
Huxley College of Environmental Studies
Western Washington University
Bellingham, Washington

Vice-President
H. Tsunoda, M.D.
Iwate Medical University
Morioka, Japan

Secretary
Prof. G.W. Miller, Ph.D.
Utah State University
Logan, Utah, USA

Treasurer
E.M. Waldcott, B.A.
Warren, Michigan

ADVISORY BOARD

Prof. Charles A. Baud, M.D.
Institute of Morphology
University Medical Center
Geneva Switzerland

Prof. A.W. Burgeshaler, Ph.D.
University of Kansas
Lawrence, Kansas, USA

K.R. Bulusu
National Environmental Engineering Research Institute
Nagpur, India

Dr. G. Embry
Department of Dental Sciences
University of Liverpool
Liverpool, England

Prof. J. Franke
Orthopedic Clinic
Medical Academy
Erfurt, GDR

Dr. Jean-Pierre Garrec, Directeur
Laboratoire d'Etude de la Pollution Atmospherique
Champenois, France

Dr. C. James Lovelace
Department of Biology
Humboldt State University
Arcata, California, USA

EDITORIAL BOARD

D.J. Ballentyne, Ph.D.
University of Victoria
Victoria, B.C., Canada

Dr. John A. Cooke
Sunderland Polytechnic School of Pharmacy and Biology
Sunderland, England

Dr. Edward Czerwinski, M.D.
Cracow Academy of Medicine
Krakow, Poland

Dr. Michael N. Egede
Kimron Veterinary Institute
Bet Dagan, Israel

Prof. Jacques Elsair
Institut des Sciences Medicales de l'Air
Alger, Algeria

Prof. G. Neil Jenkins
Newcastle Upon Tyne, England

Jerzy Kreczmir, Ph.D., Director
Department of Toxicology
Akademija Medycyny
Gozan, Poland

K.A.V.R. Krishnamachari, M.D.
National Institute of Nutrition
Hyderabad, India

Lennart Krook, DVM, Ph.D.
N.Y. State College of Veterinary Medicine, Cornell University
Ithaca, New York, USA

John R. Lee, M.D.
Mill Valley, California, USA

Yu-Min Lu, M.D.
Institute of Labor Protection
Changsha, China

Dr. Zygmont Macho
Dept. of Biochemistry
Pomeranian Medical Academy
Szczecin, Poland

Dr. F. Murray
School of Environmental and Life Sciences
Murdoch University
Mundool, Western Australia

H.M. Sinclair, M.D.
Magdalen College
Oxford, England

Prof. A.K. Susheela
All India Institute of Medical Sciences
New Delhi, India

Prof. S.P.S. Teetia, M.D.
Medical College
University of Meccut, India

Dr. Sally W. Wheeler
Hawkesbury Agricultural Research Unit
Richmond, N.S.W., Australia

Prof. Ming-Ho Yu
Huxley College of Environmental Studies
Western Washington University
Bellingham, Washington, USA
TABLE OF CONTENTS

EDITORIAL
Chronic Fluoride Intoxication: A Major Breakthrough in Diagnosis 155-156

ORIGINAL ARTICLES
Fluoride-Induced Tetrazolium Dye Reduction by Rabbit Neutrophils — by J.G.R. Elferink; Leiden, The Netherlands 157-165
Skeletal Fluorosis, Secondary to Occult Renal Disease — by M.R.C. Naidu, K.V.R. Sastry, P. Kantha Reddy and D. Raja Reddy; Hyderabad, India 166-168
Studies on Fluoride, Phosphorus and Calcium in Teeth before and after Water Fluoridation in Guangzhou, China — by Li Lanxin, Zhang Shizhong, Lu Meiqiong, Luo Rixin, Jiang Junrong and Shen Yanmin; Guangzhou, China 169-172
The Quality of Drinking Water and Hot Spring Water From an Endemic Dental Fluorosis Area in Northern Japan — by K. Matsuda; Morioka, Japan .. 173-180
Late Responses in Skeletal Fluorosis — by J.M.K. Murthy, T.E. Anandavalli, and D.R. Reddy; Hyderabad, India 181-183
Relationships Between Ionic Fluoride, Total Fluoride, Calcium, Phosphorus, and Magnesium in Serum of Fluorosis Patients — by C.S. Li, J.C. Gi, J.Y. Fan, W. Yin, X.P. Liang; Tianjin China 184-187

ABSTRACTS
Simple Method for Obtaining Bone Biopsy Specimens for Fluoride Analysis and Some Preliminary Results — by Geoffrey E. Smith; South Yarra, Melbourne, Victoria, Australia 188-189
Repetitive Strain Injury (RSI) and Magnesium and Fluoride Intake — by G.E. Smith; Melbourne, Victoria, Australia 189
Repetitive Strain Injury, or Incipient Skeletal Fluorosis — by Geoffrey E. Smith; Melbourne, Victoria, Australia 190
Plasma Fluoride and Bromide Concentrations During Occupational Exposure to Enflurane or Halothane — by P. Carlsson, J. Ekstrand and B. Hallen; Stockholm, Sweden 190-191
Levels of Fluoride in Saliva and Urine Depending on Type of Anti-caries Fluoride Prophylaxis and on Dental Caries Resistance of Children — by E. Kuczynska; Lublin, Poland

Pharmacokinetics of Chronic Fluoride Ingestion in Growing Pigs — by A. Richard, J. Kragstrup, and F. Nielsen-Knudsk; Aarhus, Denmark

Inhibition of Acid Production from Oral Bacteria by Fluorapatite-Derived Fluoride — by D.S. Harper and W.J. Loesche; Ann Arbor, Michigan, USA

To the Problem of Trace Elements and Hydrocarbons Emissions from Combustion of Coal — by M. Bezacinsky, E. Pifatova, V. Jirele, and V. Bencko; Prague, Czechoslovakia

Trabecular Stress Fractures During Fluoride Therapy for Osteoporosis — by C.M. Schnitzler and L. Solomon; Johannesburg, South Africa

Effect of Low Levels of Fluoride in Solution on Enamel Demineralization in Vitro — by H.C. Margolis, E.C. Moreno, and B.J. Murphy; Boston, Massachusetts, USA

Effect of Fluoride Ingestion on White-Tailed Deer (Odocoileus virginianus) — by J.W. Suttie, R.J. Hamilton, A.C. Clay, M.L. Tobin, and W.G. Moore; Madison, Wisconsin and Bonneau, South Carolina, USA

Fluoride, Teeth and Bone — by Geoffrey E. Smith; Melbourne, Victoria, Australia

Nature of Early Caries Lesions in Enamel — by J. Arends and J. Cristoffersen; Groningen, Netherlands

AUTHOR INDEX

SUBJECT INDEX

The International Society for Fluoride Research (ISFR) extends a special invitation to you to participate in the 16th Conference. This will be held in the Conference Hall of Zyma at Nyon (30 km from Geneva) Monday, August 31st through Wednesday, September 2nd, 1987. Professor C.A. Baud will host this Conference and he has nominated Christiane Demeurisse as secretary of the Conference. The Fluoride journal will carry information about the Conference in future issues.

FLUORIDE is published quarterly by the INTERNATIONAL SOCIETY FOR FLUORIDE RESEARCH, INC.

SUBSCRIPTION RATES — Price per annum in advance, including postage: $30.00. Single copies, $8.50.

MANUSCRIPTS for publication should be submitted in English, doublespaced with generous margins. References should be arranged according to the order in which they are cited in the text, and written as follows: Author, title, Journal, volume, pages and year. Each paper must contain a summary ordinarily not exceeding 15 lines. Papers are accepted for publication after favorable evaluation and recommendation by qualified reviewers.

FLUORIDE is listed in:

Current Contents/Agriculture, Biology & Environmental Sciences

COPIES of articles from this publication are now available from the UMI Article Clearinghouse. Mail request to University Microfilms International, 300 North Zeeb Road, Box 91, Ann Arbor, Michigan 48106
CHRONIC FLUORIDE INTOXICATION:
A MAJOR BREAKTHROUGH IN DIAGNOSIS

Recently a major discovery has been reported in the diagnosis of chronic ill effects from drinking fluoridated water. Australian dentist Geoffrey Smith has devised a new method of obtaining biopsy specimens from alveolar bone, the interradicular septum between the roots of molar teeth which is exposed when the tooth is extracted (1). Of twenty-four females in whom F\(^-\) in alveolar bone was measured, twelve were suffering from repetitive strain injury (RSI). All subjects were residing in fluoridated Melbourne. Levels of fluoride in alveolar bone of subjects with RSI ranged up to 3300 (average 2737) and were higher than in women of similar age who were not afflicted, namely up to 2200 (average 1687). In another study (2) of patients whose bones contained up to 4720 ppm (mean 3320) all but one of the 17 investigated complained of vague pains, stiffness in lower and upper extremities, shoulder, neck and lower back. Bone changes were shown by x-ray in vertebrae, legs, knees, ankles and, particularly, in forarms and elbows where free bony bodies were found and clear evidence of calcification of tendons and ligaments.

Estimates of dietary intake of RSI subjects revealed a Mg\(^{2+}\) deficit and an excessive F\(^-\) intake (3). Fluorotic bone has an increased Mg\(^{2+}\) content, possibly due to some deposition of MgF\(_2\). A localized Mg\(^{2+}\) deficiency could disturb pyrophosphate metabolism and lead to deposition of Ca\(^{2+}\) salts in sensitive areas. Through adjustment of dietary intake of the previously mentioned 12 RSI subjects which included more Mg\(^{2+}\) and less F\(^-\), eight of the subjects experienced marked relief from previously painful RSI symptoms after a six-week test period.

This new evidence provides another objective criterion of reversible fluoride intoxication. It reinforces and confirms the extensive research based primarily on clinical observation recorded by G.L. Waldbott in more than 80 publications in the U.S.A. and abroad beginning in 1955 (examples and sources: 4-15). In the preskeletal phase of incipient fluorosis, when symptoms are still reversible, objective diagnostic signs are sparse (12,14). In addition to urine analysis and laboratory tests, one of the major diagnostic tools utilized by Dr. Waldbott, was the double-blind test: The pharmacist prepared three one-gallon jugs of distilled water, which he designated \#1, \#2, and \#3. To one of the jugs, he added nine mg of NaF (1 ppm F\(^-\)). Neither the patient nor the physician knew which bottle contained plain water or which contained fluoride. The patient was instructed to consume water from one jug for the first few days and from the other two on consecutive days. Invariably, upon recurrence of symptoms, the patient identified the bottle which contained fluoridated water (13).

Through extensive in-depth studies of chronic fluoride intoxication in humans from natural fluoride water, and in humans and animals from fluoride-contaminated air in the vicinity of factories, a definite symptom complex emerged. Although not every individual manifested all the same symptoms, certain salient characteristics recurred almost invariably, namely ulnar nerve palsy, weakness in arms and legs, constipation alternating with diarrhea or both, loss of mental acuity, excessive fatigue, and gastric distress. Other symptoms which occurred often were visual disturbances, backache, and headache, all of which disappeared upon elimination of fluoridated water or removal from the air-contaminated area, provided that the illness was still in its early stages.
From the above, it is conceivable that cases of preskeletal chronic fluoride poisoning constitute an enigma to the diagnostician, especially to the practicing physician. Because recognition requires an in-depth study, it is not unexpected that some cases either remain undiagnosed or are misdiagnosed. This new research by Dr. Smith provides a much-needed objective method for early recognition of the preskeletal phase of chronic fluoride poisoning. It is hoped that it will be widely utilized as a diagnostic tool.

E.M.W.

References

FLUORIDE-INDUCED TETRAZOLIUM DYE REDUCTION
BY RABBIT NEUTROPHILS

by

J.G.R. Elferink*
University of Leiden, The Netherlands

SUMMARY: In rabbit neutrophils sodium fluoride (20 mM) induces a strong increase in reduction of the tetrazolium dye iodonitrotetrazolium (INT) indicating an activation of the metabolic burst. This occurs in the absence of extracellular Ca²⁺; fluoride-induced INT reduction is little influenced by the presence or absence of Ca²⁺, Mg²⁺ or Sr²⁺, but it is strongly inhibited by Co²⁺, Ni²⁺, Mn²⁺ and La³⁺. In the presence of Ca²⁺ or La³⁺ cell damage occurs. Fluoride-induced INT reduction is characterized by a lag time of about 10 min, and is strongly inhibited by Ca²⁺-complexing and Ca²⁺-antagonistic drugs. The results suggest the involvement of intracellular Ca²⁺ in fluoride-activation of the metabolic burst. The involvement of phospholipase A₂ in the activation is questionable because inhibitors of this enzyme gave divergent results. There is synergism between fluoride and some other activators of the metabolic burst, especially phorbol myristate acetate, with regard to activation of INT reduction.

KEY WORDS: Calcium; Fluoride; INT reduction; Neutrophils.

Introduction

The neutrophil is the first line defence of the organism against microbial invaders; these are phagocytized and killed by products released by degranulation, and by toxic oxygen products produced during the metabolic burst. The metabolic burst comprises a series of processes, eventually resulting in the enhanced production of toxic oxygen metabolites. Exposure of neutrophils in vitro to certain soluble activators may result in degranulation and a metabolic burst, which enables the study of these processes in the absence of phagocytosis (1).

During activation of the neutrophil to perform a metabolic burst the formation of NADPH is strongly enhanced, and this product is used to convert molecular oxygen into superoxide. The enhanced production of reducing substances makes it possible to follow the metabolic burst with reducible dye molecules. Tetrazolium dyes are well suited for this purpose (1,2). In this investigation iodonitrotetrazolium (INT) reduction was used as a measure for activation of the metabolic burst (3).

Fluoride in relatively high concentrations, is an activator of neutrophils

* J.G.R. Elferink, Department of Medical Biochemistry, Sylvius Laboratories, University of Leiden, P.O. Box 9503, 2300 RA Leiden, The Netherlands.
Elferink

(4-12). It induces a strong Ca\(^{2+}\)-independent degranulation in rabbit and guinea-pig peritoneal neutrophils, but little or no degranulation in human neutrophils (4-7). Both in human and rabbit neutrophils fluoride induces an activation of the metabolic burst. With human neutrophils, extracellular Ca\(^{2+}\) was necessary (11). Diverging results were obtained when human neutrophils were used for fluoride activation, which indicates that fluoride activation is strongly dependent on the cell type used, and on the experimental conditions (7-12).

In this investigation we studied some aspects of fluoride activation of the metabolic burst in rabbit neutrophils, using INT reduction as a measure of the metabolic burst. The absence of a requirement of extracellular Ca\(^{2+}\) in fluoride activating of the metabolic burst in these cells presents some advantages. No exocytosis takes place, because fluoride-activated exocytosis in rabbit neutrophils is strictly Ca\(^{2+}\)-dependent. There is no possibility of CaF\(_2\) precipitation. An important advantage is the fact that activation of cells in the absence of extracellular Ca\(^{2+}\) enables the study about the role of intracellular Ca\(^{2+}\).

Materials and Methods

Neutrophils: Rabbit peritoneal neutrophils were obtained as described previously (11). The cells were suspended in a medium consisting of 140 mM NaCl, 5 mM KCl and 20 mM Tris-HCl pH 7.4. The final cell concentration in the experiments was 3 x 10\(^6\) neutrophils per ml. All experiments were carried out at 37\(^\circ\)C in a shaking waterbath.

Tetrazolium dye reduction: The metabolic burst was measured as an increased iodonitrotetrazolium (INT) reduction. INT reduction was measured by including 0.4 mM INT in the mixture of 3 x 10\(^6\) neutrophils per ml. In the standard procedure the mixture contained 20 mM sodium fluoride as an activator; 1 mM EDTA was added to remove adherent Ca\(^{2+}\) ions, and 1 mM KCN was present to optimize INT reduction. After incubation for 40 min at 37\(^\circ\)C the reaction was terminated by adding 5 ml 0.5 M HCl. In those cases where the enzyme release during INT reduction was measured the reaction was terminated by centrifugation, the supernatant was removed for determination of enzyme release, and 5 ml 0.5 M HCl was added to the residue. The HCl suspension was centrifuged and the residue, containing the reduced INT, red colored and insoluble, was taken up in pyridine (2 ml). To dissolve the residue the pyridine solution was warmed for 10 min in a boiling waterbath. After cooling to room temperature the absorbance of the pyridine solution was measured at 510 nm. The results are expressed as nmoles INT reduced per 3 x 10\(^6\) neutrophils (2,3).

Cell integrity: The release of the cytoplasmic enzyme lactate dehydrogenase (LDH) was determined as a measure for plasma membrane damage. LDH was estimated by measuring the conversion of NADH into NAD\(^+\) during the LDH-catalyzed conversion of pyruvate into lactate. Enzyme release was expressed as a percentage of a maximum value, obtained by treating the cells with 0.2% Triton X-100.

Chemicals: Iodonitrotetrazolium chloride (INT), phorbol myristate acetate (PMA), quin2-AM, chlortetracycline, the cytochalasins A and B and formyl-methionyl-leucyl-phenylalanine (FMLP) were from Sigma Chemical Co; 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCl (TMB-8) was obtained from Janssen Chimica, verapamil was a gift from Knoll AG, Ludwigshafen, and prenylamine was from Hoechst Holland.

Volume 19, No. 4
October, 1986
Results

Fluoride induces INT reduction in the absence of extracellular Ca\(^{2+}\). In the presence of Ca\(^{2+}\), Mg\(^{2+}\), or Sr\(^{2+}\) the fluoride-induced INT reduction is about the same as in the absence of divalent cation. In the presence of extracellular Ca\(^{2+}\) LDH release was observed, indicating cell damage (Table 1).

<table>
<thead>
<tr>
<th>nmol INT reduced</th>
<th>% LDH release</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>25.7 ± 0.6</td>
</tr>
<tr>
<td>1 mM Ca(^{2+})</td>
<td>25.5 ± 1.3</td>
</tr>
<tr>
<td>1 mM Mg(^{2+})</td>
<td>25.2 ± 0.7</td>
</tr>
<tr>
<td>1 mM Sr(^{2+})</td>
<td>24.0 ± 1.7</td>
</tr>
<tr>
<td>1 mM Ba(^{2+})</td>
<td>28.0 ± 4.3</td>
</tr>
<tr>
<td>1 mM Na(^{+})</td>
<td>19.4 ± 5.6</td>
</tr>
<tr>
<td>1 mM Ni(^{2+})</td>
<td>7.5 ± 0.5</td>
</tr>
<tr>
<td>1 mM Co(^{2+})</td>
<td>6.6 ± 0.4</td>
</tr>
<tr>
<td>1 mM Mn(^{2+})</td>
<td>4.6 ± 0.2</td>
</tr>
<tr>
<td>0.1 mM La(^{3+})</td>
<td>8.2 ± 0.4</td>
</tr>
<tr>
<td>Control</td>
<td>4.6 ± 0.2</td>
</tr>
<tr>
<td>(no F(^{-}) treatment)</td>
<td>4 ± 2</td>
</tr>
</tbody>
</table>

Table 1

The Effect of EDTA, EGTA and Metal Ions on Fluoride-induced INT Reduction

Neutrophils exposed to 20 mM sodium fluoride in presence of given concentration of metal ion, EDTA or EGTA. After incubation for 40 min at 37°C cells were centrifuged. Supernatant was used for LDH determination. To the residue HCl was added and treated as described in Methods. Values given are mean of three experiments ±SD.

Fluoride-induced activation was compared with activation by phorbol myristate acetate. Fluoride-induced activation is characterized by a lag time of 10-15 min which is nearly absent (Figure 1) in PMA activation. Per unit of time fluoride-induced INT reduction is less than PMA-induced INT reduction (Figure 1). Int reduction is a relatively slow process as compared with the reduction of other dyes, such as cytochrome c (21), and it continues for a long time regardless of the type of activator. Individual variations play a role in fluoride-induced activation: there are differences between various batches of cells with regard to fluoride-induced INT reduction.

A number of Ca\(^{2+}\)-complexing and Ca\(^{2+}\)-antagonistic drugs were studied with regard to their ability to interfere with fluoride-induced INT reduction. In the absence of extracellular Ca\(^{2+}\) all compounds tested strongly inhibited fluoride-induced activation (Table 2). No effort was done to see whether this effect could be reversed by extracellular Ca\(^{2+}\), because of the possible formation of CaF\(_2\) crystals and LDH release which may hamper interpretation of the results.

Whereas there is little difference in fluoride-induced INT reduction in the absence of divalent cations and in the presence of Ca\(^{2+}\), Mg\(^{2+}\), and Sr\(^{2+}\), there is some inhibition in the presence of Ba\(^{2+}\). The ions Ni\(^{2+}\), Co\(^{2+}\), Mn\(^{2+}\), and La\(^{3+}\) strongly inhibit activation by fluoride (Table 1). This is probably not due
Figure 1

Time course of INT reduction in presence of either fluoride or phorbol myristate acetate (PMA) as activator. Values given are mean of three experiments, corrected for the INT reduction of non-activated (resting) cells. INT reduction is represented as nmoles INT as reduced per 3 x 10⁶ cells.

Table 2

Effect of Ca²⁺-antagonistic and Ca²⁺-complexing Drugs on Fluoride-induced INT Reduction

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>nmoles INT reduced</th>
<th>% inhibition (of activation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>41.9 ±1.7</td>
<td></td>
</tr>
<tr>
<td>10 μM quin-2 AM</td>
<td>11.1 ±1.9</td>
<td>92</td>
</tr>
<tr>
<td>100 μM chlortetracycline</td>
<td>14.3 ±1.6</td>
<td>82</td>
</tr>
<tr>
<td>100 μM TMB-8</td>
<td>18.2 ±1.2</td>
<td>71</td>
</tr>
<tr>
<td>200 μM verapamil</td>
<td>25.5 ±0.8</td>
<td>49</td>
</tr>
<tr>
<td>10 μM prenylalanine</td>
<td>24.5 ±4.2</td>
<td>52</td>
</tr>
<tr>
<td>Control (no F⁻ treatment)</td>
<td>8.4 ±0.6</td>
<td></td>
</tr>
</tbody>
</table>

Neutrophils preincubated for 15 min at 37°C with inhibitor, after which INT and F⁻ (20 mM) added, followed by incubation at 37°C for 40 min. In all experiments 1 mM EDTA was present. Percentage inhibition refers to inhibition of activation, i.e., the difference of INT reduction in F⁻-activated cells and control cells, which are not exposed to fluoride.

\[
\text{% inhibition} = \frac{\text{nmoles INT reduced}}{41.9 - 8.4} \times 100
\]

Values given are mean of three experiments ± SD.
to removal of extracellular fluoride due to precipitation of the metal fluoride, because extracellular fluoride (20 mM) levels are likely to be far in excess. In the presence of Ca\(^{2+}\) and La\(^{3+}\) LDH release occurs.

To study the possible involvement of phospholipase A\(_2\) in fluoride activation of neutrophils, a series of inhibitors of this phospholipase was studied. As can be seen in Table 3, there are only a few compounds with a strong inhibiting effect at low concentration (p-bromophenacyl-bromide, chlorpromazine), some compounds with an inhibiting effect at relatively high concentrations (propranolol, chloroquine, mepracrine) and some compounds without an inhibiting effect (hydrocortison phosphate, indomethacine). Some of the compounds tested had a significant potentiating effect at low concentration (p-bromophenacyl-bromide, mepracrine, chloroquine) (Table 3).

Table 3

<table>
<thead>
<tr>
<th>The Effect of Various Phospholipase A(_2) Inhibitors on Fluoride-induced INT Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT reduction</td>
</tr>
<tr>
<td>p-Bromophenacyl-bromide, 5 (\mu)M</td>
</tr>
<tr>
<td>p-Bromophenacyl-bromide, 25 (\mu)M</td>
</tr>
<tr>
<td>Chlorpromazine, 50 (\mu)M</td>
</tr>
<tr>
<td>Propranolol, 500 (\mu)M</td>
</tr>
<tr>
<td>Chloroquine, 100 (\mu)M</td>
</tr>
<tr>
<td>Chloroquine, 500 (\mu)M</td>
</tr>
<tr>
<td>Mepacrine, 10 (\mu)M</td>
</tr>
<tr>
<td>Mepacrine, 100 (\mu)M</td>
</tr>
<tr>
<td>Hydrocortison phosphate, 200 (\mu)M</td>
</tr>
<tr>
<td>Indomethacin, 100 (\mu)M</td>
</tr>
<tr>
<td>Control (no fluoride)</td>
</tr>
</tbody>
</table>

Cells were preincubated in the presence of 1 mM EDTA with the given concentration of inhibitor for 15 min at 37°C, 20 mM fluoride was added followed by incubation for 40 min. Values given are mean of three experiments ± SD.

This potentiating effect, followed by an inhibitory effect, is also displayed by some drugs which are supposed to interfere with other targets: trifluoperazine, which is a membrane-disturbant agent and a calmodulin inhibitor, and mordihydroguaiaretic acid, which is a lipoxygenase inhibitor. All these agents (Table 3, Figure 2) give the same biphasic action: a potentiation of fluoride-induced INT reduction at low concentrations, and an inhibition at higher concentrations.

The effect of the combined action of a suboptimal concentration of fluoride with suboptimal concentrations of other activators is represented in Table 4. The cytochalsins and the chemotactic peptide FMLP, combined with 10 mM fluoride, give only little more INT reduction than the sum of each activator separately. The effect of the combined action of PMA and fluoride is more striking. The activating effect of a suboptimal concentration of PMA combined with 10 mM fluoride is much higher than the sum of each of them separately. When an optimal concentration of PMA (100 ng/ml) is combined with 20 mM fluoride, the fluoride seems to inhibit: the combined activation is much less than the effect of PMA alone.

Fluoride
Effect of some inhibitors on fluoride-induced INT reduction. Cells preincubated in the presence of 1 mM EDTA with the given concentration of inhibitor for 15 min at 37°C; 20 mM sodium fluoride added, followed by incubation for 40 min.

Discussion

Fluoride causes a strong increase of INT reduction in rabbit neutrophils, indicating that it activates the metabolic burst in these cells. INT reduction presents some advantages as an indicator of the metabolic burst over the more commonly used cytochrome c reduction and NBT reduction. INT reduction covers a broader aspect of the metabolic burst than the extracellular release of superoxide, which is exclusively measured during cytochrome c reduction. Though less sensitive than NBT reduction, INT reduction is not accompanied by cell damage, which occurs with NBT reduction (2,3). The time course of INT reduction shows that it is a relatively slow process. With fluoride as activator this is even more pronounced, because the activating effect of fluoride is less than that of PMA, and because of the lag time which is much longer for fluoride-induced than for PMA-induced INT reduction. The lag time probably represents the entry of fluoride into the cells. We have previously shown that this membrane passage is pH-dependent and this makes a penetration of the form of HF likely (5,11,12). The lag time indicates that fluoride activates the
Table 4

Synergism between Suboptimal Concentrations of Fluoride and other Activators in INT Reduction

<table>
<thead>
<tr>
<th>Activator</th>
<th>INT reduction (Corrected)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in the presence of</td>
</tr>
<tr>
<td></td>
<td>0 F⁻</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>0.5 μM cytochalasin A</td>
<td>5.6 ±0.3</td>
</tr>
<tr>
<td>5 μM cytochalasin B</td>
<td>4.5 ±0.2</td>
</tr>
<tr>
<td>10⁻⁸ M FMLP</td>
<td>4.4 ±0.5</td>
</tr>
<tr>
<td>2 ng PMA/ml</td>
<td>4.8 ±0.2</td>
</tr>
<tr>
<td>5 ng PMA/ml</td>
<td>15.6 ±2.9</td>
</tr>
</tbody>
</table>

Cells incubated in presence of 1 mM EDTA and the given concentration of activator, without or with 10 mM sodium fluoride, for 40 min at 37°C. From the INT reduction measured (in nmoles INT reduced per 3 x 10⁶ cells) the INT reduction of resting cells (being 5.6 ±0.4) was subtracted: INT reduction (corrected) = INT reduction (measured) - INT reduction (resting cells).

Values given are mean of three experiments ± SD.

An optimal concentration of PMA (100 ng/ml) gave an INT reduction of 66.1 ±3.2; 20 mM fluoride gave an INT reduction of 15.5 ±0.4; the combined presence of 100 ng PMA/ml and 20 mM fluoride gave an INT reduction of 42.5 ±1.6.

FMLP = formyl-methionyl-leucyl-phenylalanine;
PMA = phorbol myristate acetate

metabolic burst after penetration into the cell, and that its effect is thus the inner side of the plasma membrane or cell.

In contrast with human neutrophils (7), extracellular Ca²⁺ is not required for fluoride-induced activation of the metabolic burst in rabbit neutrophils. The results indicate, however, that intracellular Ca²⁺ plays a pivotal role in fluoride-induced INT reduction. Quin2-AM is a membrane permeant agent that is intracellularly converted into the water soluble quin2, which cannot leave the cell; high intracellular levels of quin2 are thus attained with low extracellular concentration of quin2-AM (13). Quin2 and chlortetracycline are Ca²⁺-complexing agents (14), and both strongly inhibit fluoride activation in the absence of extracellular Ca²⁺.

TMB-8, a reported antagonist of intracellular Ca²⁺ (15), equally inhibits fluoride-induced INT reduction. The same applies to versapamil and prenylamine (14), which have been shown to possess a Ca²⁺-antagonistic intracellular effect, at relatively high concentrations.

Inhibition of fluoride activation of the metabolic burst by these agents is compatible with the view that intracellular Ca²⁺ plays an important role in this activation.

The effect of the metal ions Ni²⁺, Co²⁺, Mn²⁺ and La³⁺ fits well into this picture. These ions are Ca-antagonistic metal ions and prevent Ca²⁺

Fluoride
movement across the membrane (16). This cannot apply to the inhibition of Ca\(^{2+}\) entry into the cells because there is no extracellular Ca\(^{2+}\). It may quite well be, however, that these agents penetrate into the cell, and that they interfere with intracellular Ca\(^{2+}\) movements.

There are apparently differences in Ca\(^{2+}\) requirements for cells derived from different sources, and for the metabolic burst as compared with exocytosis. In rabbit neutrophils fluoride activation of the metabolic burst may exclusively occur with intracellular Ca\(^{2+}\), whereas for human neutrophils a [partial] dependence on extracellular Ca\(^{2+}\) exists. In the same cell type, i.e. rabbit neutrophils, differences exist for Ca\(^{2+}\) requirement for fluoride activated metabolic burst and exocytosis: the latter is absolutely dependent on extracellular Ca\(^{2+}\), whereas this is not so with the metabolic burst. This suggests that the Ca\(^{2+}\) requirement for the metabolic burst is either lower or that the Ca\(^{2+}\) is derived from other stores than in exocytosis.

Phospholipase A\(_2\) has been considered as an important enzyme in neutrophil activation, because of its ability to hydrolyze membrane phospholipids and thus to initiate arachidonic acid metabolism (17). This enzyme could furthermore contribute to differences between rabbit and human neutrophils because there is much more phospholipase A\(_2\) in rabbit than in human neutrophils (18).

Though a role for phospholipase A\(_2\) in prostaglandin metabolism of neutrophils cannot be denied there is no experimental evidence for a rate-limiting role of this enzyme in fluoride activation. Some of the phospholipase inhibitors are indeed inhibitory, but mostly in much higher concentrations than required for inhibition of the isolated enzyme (19). Some of the phospholipase A\(_2\) inhibitors as well as the inhibitors of other targets (trifluoperazine (20), nordihydroguaiaretic acid (21)) show a biphasic pattern: potentiation of INT reduction at low concentrations, and inhibition at higher concentrations. This biphasic pattern strongly resembles that of the large class of anesthetic-like membrane disturbing agents, which stabilize membranes in low concentrations, and destabilize in higher concentrations (22). Because all agents we tested, which had a biphasic effect, have less or more hydrophobic parts in their molecules and are thus probably membrane active, it might well be that their effect is not specific, but a general anesthetic-like effect on membrane integrity.

Suboptimal concentrations of PMA and fluoride have a strong synergistic effect. Effects of agents which mobilize intracellular Ca\(^{2+}\) have been found to act synergistic with that of PMA, which acts by activation of protein kinase (23). Protein kinase C activation and Ca\(^{2+}\) mobilization act synergistically to elicit the full physiologic response of platelets and neutrophils (23). It may be that fluoride exerts its synergistic effect by mobilizing intracellular Ca\(^{2+}\). Other possibilities however, cannot be excluded, though it is evident that the pathways of fluoride and PMA activation may strongly influence each other.

References

Volume 19, No. 4
October, 1986
SKELETAL FLUOROSIS, SECONDARY TO OCCULT RENAL DISEASE

by

M.R.C. Naidu,* K.V.R. Sastry, P. Kantha Reddy and D. Raja Reddy
Hyderabad, India

SUMMARY: Forty-one consecutive patients with skeletal fluorosis were reviewed. Nine of these cases were found to have renal disease; the fluoride content of their drinking water ranged between 0.5-2.0 ppm. It is surmised that these patients developed fluorosis secondary to renal disease.

KEY WORDS: Occult renal disease; Skeletal fluorosis.

Introduction

The development of skeletal fluorosis depends upon intake of fluoride over a prolonged period. In addition, strenuous manual labor and poor nutrition also contribute to the development of skeletal fluorosis (1). The status of the kidneys, too, plays an important role in the development of fluoride toxicity. Normally functioning kidneys can excrete fluoride without significant retention in the body (2). On the other hand, excretion of fluoride is diminished if the person concerned is suffering from chronic kidney disease. He may develop fluorosis even if the fluoride level of water consumed is low (3,6-10).

Since skeletal fluorosis secondary to renal disease appears to be fairly common in our experience, the following report documents this association.

Material

During the past two years, forty-one cases of skeletal fluorosis have been investigated in nine of which renal disease was detected. Five were males and four were females between 25-60 years of age. The fluoride levels of the drinking water ranged from 0.2 ppm to 2.0 ppm. The clinical profile of these cases is given in Table 1.

Discussion

The principle means by which 90% of fluoride is excreted from the body is urine. In normal individuals urinary fluoride fluctuates widely between 0 and 1.2 ppm with an average of about 0.4 ppm when the fluoride content of drinking water is 0.3 ppm (2). Fluoride is removed from the circulation by glomerular filtration. Tubular re-absorption of fluoride is less than that of chloride and thus the kidney excretes fluoride rapidly (3). Excretion of fluoride is much less if the person concerned is suffering from chronic renal disease resulting in renal failure, which inevitably leads to high concentrations of fluoride in serum and bone. Hence individuals suffering from chronic renal disease...
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
<th>E/NE</th>
<th>C.P.</th>
<th>F Level</th>
<th>B.U.N.</th>
<th>S.C.</th>
<th>R.U.S.</th>
<th>IVP.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>M.D.</td>
<td>60</td>
<td>M</td>
<td>E</td>
<td>Pain and deformity of spine.</td>
<td>0.2 ppm</td>
<td>60 mg</td>
<td>3.3 mg</td>
<td>-</td>
<td>Gross delay in excretion</td>
<td>L. kidney not seen R. kidney small with irregular margins</td>
</tr>
<tr>
<td>2.</td>
<td>M.K.</td>
<td>44</td>
<td>M</td>
<td>NE</td>
<td>Pain and restricted spinal movements</td>
<td>C2 ppm</td>
<td>56 mg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>L. kidney not functioning. R. kidney normal</td>
</tr>
<tr>
<td>3.</td>
<td>K.B.</td>
<td>42</td>
<td>F</td>
<td>E+NE</td>
<td>Pain and restricted neck movements</td>
<td>2 ppm</td>
<td>102 mg</td>
<td>5.2 mg</td>
<td>Bilateral contracted kidneys</td>
<td>-</td>
<td>16 yrs. NE 12 yrs in E again 11 yrs in NE.</td>
</tr>
<tr>
<td>4.</td>
<td>C.N.</td>
<td>60</td>
<td>M</td>
<td>NE</td>
<td>Paraparesis</td>
<td>2 ppm</td>
<td>50 mg</td>
<td>2 mg</td>
<td>-</td>
<td>Delayed excretion both sides</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>R.M.</td>
<td>50</td>
<td>M</td>
<td>NE</td>
<td>Quadriparesis</td>
<td>0.2 ppm</td>
<td>62 mg</td>
<td>2.4 mg</td>
<td>R. kidney contracted L. kidney normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>M.S.</td>
<td>25</td>
<td>F</td>
<td>NE</td>
<td>Pain and restricted neck movements</td>
<td>0.2 ppm</td>
<td>74 mg</td>
<td>3.2 mg</td>
<td>Bilateral contracted kidneys with irregular margins</td>
<td>Delayed excretion</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>S.R.</td>
<td>46</td>
<td>F</td>
<td>E</td>
<td>Pain and deformity of spine</td>
<td>2 ppm</td>
<td>80 mg</td>
<td>5.2 mg</td>
<td>Bilateral contracted kidneys, left more than right</td>
<td>Grossly delayed excretion</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>R.K.</td>
<td>40</td>
<td>M</td>
<td>E</td>
<td>Pain and deformity</td>
<td>2 ppm</td>
<td>60 mg</td>
<td>4.2 mg</td>
<td>Bilateral contracted kidneys</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>P.L.</td>
<td>50</td>
<td>F</td>
<td>NE</td>
<td>Neck pain and quadriparesis</td>
<td>0.2 ppm</td>
<td>60 mg</td>
<td>3.6 mg</td>
<td>R. kidney shrunken L. kidney normal</td>
<td>Delayed excretion both sides</td>
<td></td>
</tr>
</tbody>
</table>

E = Endemic, NE = Non-endemic
C.P. = Clinical Profile
Normal F Level, 1-2 ppm
B.U.N. = Blood Urea Nitrogen
Normal level, 10-20 mg/dl
S.C. = Serum Creatinine
Normal Level, 2 mg/dl
R.U.S. = Renal Ultrasound Scan
IVP = Intra Venus Pyelogram
failure may develop skeletal fluorosis even at a low level of fluoride in drinking water. Patients with renal transplants who subsequently need dialysis developed skeletal fluorosis over a period of 1-2 years when the dialysing fluid contained 1 ppm of fluoride (4). In this study patients developed skeletal fluorosis secondary to renal disease although the fluoride level in drinking water was as low as 1-2 ppm. In case three, the onset of renal disease appears to have precipitated skeletal fluorosis. In 22% of the cases renal disease was responsible for the development of skeletal fluorosis. Hence it is important to investigate renal function in all cases of fluorosis, especially in non-endemic areas.

Conclusion

Although fluoride toxicity on the renal parenchyma leading to the development of skeletal fluorosis should be considered, it is the diseased kidney's inability to excrete the fluoride that appears to be the main determinant in the development of skeletal fluorosis. Hence in the general population, in individuals with apparent or overt kidney disease, drinking fluoridated water may result in disabling skeletal fluorosis.

References

Volume 19, No. 4
October, 1986
STUDIES ON FLUORIDE, PHOSPHORUS AND CALCIUM IN TEETH BEFORE AND AFTER WATER FLUORIDATION IN GUANGZHOU, CHINA

by

Li Lanxin*, Zhang Shizhong, Lu Meiqiong, Luo Rixin, Jiang Junrong and Shen Yanmin
Sun Yat-Sen University of Medical Sciences, Guangzhou, China

SUMMARY: The fluoride, phosphorus and calcium content of both permanent and deciduous teeth before and after water fluoridation in Guangzhou (1965-1972) was investigated. The whole tooth was crushed and ground to a fine powder which could pass through a 60-100 mesh sieve and the powder was separated into enamel, dentin and cementum by flotation methods. The cementum was discarded. The fluoride in the sample powder (enamel and dentin) was isolated by a diffusion method in a modified Conway cell and determined with a fluoride-ion selective electrode. In the residual solution after diffusion of hydrogen fluoride, phosphate was determined by a molybdovanadophosphoric acid colorimetric method, and calcium was determined by an EDTA titration method after the phosphate was removed by solvent extraction.

Over 80 samples of teeth were analyzed before and after water fluoridation in Guangzhou City in China for 7 years from 1965-1972. Results show a significant increase in fluoride content in deciduous teeth after water fluoridation, but for permanent teeth, the increase was not significant. The weight ratio of calcium to phosphorus was found to be 2:1 approximately.

KEY WORDS: Guangzhou, China; Teeth, fluoride, phosphorus, calcium content; Water fluoridation.

Introduction

Cariostatic action of fluoride may be partly due to the fact that the hydroxyapatite on the outer surface of enamel changes to fluorapatite which is more stable and less soluble than apatite without fluoride (1-4).

\[\text{Ca}_5\text{PO}_4\text{OH} + \text{H}^+ + \text{F}^- \rightarrow \text{Ca}_5\text{PO}_4\text{F} + \text{H}_2\text{O} \]

Under normal nutritive conditions, the ratio of calcium to phosphorus in dental enamel is 2:1 (by wt.). This ratio approaches that of calcium to phosphorus in apatite. The fluoride in food and drinking water ingested and the mean values are about 130 and 360 ppm, respectively, if the fluoride concentration in drinking water is 1.1-1.2 ppm (1-4). This fluoride content in enamel may be adequate to convert some of the outer surface of the apatite crystals to fluorapatite which then exerts a protective action on the unsubstituted hydroxyapatite within.

* Professor Li Lanxin, Department of Chemistry, Sun Yat-Sen University of Medical Sciences, Guangzhou, China.
Guangzhou (in Guangdong, China) is in subtropical zone where the fluoride content in drinking water without fluoridation is 0.2-0.3 ppm. The water supplies have been fluoridated (up to 0.6-1.0 ppm) since 1965. The purposes of this paper are to determine fluoride, phosphorus and calcium in teeth samples at the first and the seventh year after water fluoridation, and to test any relationship between water fluoridation and anti-caries ability.

Material and Methods

Collection and treatment of samples: Natural fluoride concentration is about 0.2-0.3 ppm in drinking water in Guangzhou. In late 1965, water supplies were fluoridated up to 0.5-1.0 ppm. In 1965-1966 and 1971-1972, we collected the tooth samples in our dental clinic from residents who were born and living in Guangzhou. Samples were air-dried, and labeled after washing and drying. Before analysis, the samples were soaked in 3% hydrogen peroxide for 10 min, washed with tap water, and then with deionized water. These samples were dried at 100°C for 15 minutes and placed in a desiccator for 1 day.

The whole tooth was crushed and ground to a fine powder, which could pass through 60-100 mesh sieve in some device such as a ball mill or an agate mortar. By means of a flotation method (5), the whole tooth powder was added to a fluid with a density of 2.70 (bromoform:acetone 91:9). The enamel (density 2.9-3.0) sinks, while the dentin and cementum (2.14 and 2.03, respectively) floats. After separating, the mixture of dentin and cementum was added to a fluid with a density of 2.07 (bromoform:acetone 61:39). The dentin sinks, while the cementum floats. The latter was discarded. Each of these enamel and dentin samples were washed with absolute alcohol 3 times, dried and stored in a desiccator for use.

Isolation of fluoride: 200 mg of enamel or dentin sample powder were weighed accurately, and transferred to a diffusion cell (modified Conway cell) (6) in which was a small boat (instead of the center well of Conway cell) containing a solution of 0.5 ml 2.5 N NaOH. 5 ml of perchloric acid (1:1) was added to the sample. The cell was covered and sealed immediately, and diffused for 22 hrs at 55 ±2°C. After cooling, the NaOH solution that had absorbed HF was transferred to a 50 ml volumetric flask and adjusted to about pH 5 with dilute HCl, diluted to the mark and mixed well. This solution was used for fluoride analyses.

The residual solution in which HF had been removed by diffusion was filtered into a 50 ml volumetric flask, and diluted to the mark and mixed well. This solution was used for phosphorus and calcium analyses.

Determination of fluoride: 10.0 ml of each of 10⁻⁵, 10⁻⁴, 10⁻³, 10⁻², 10⁻¹ M NaF standard solutions and the above sample solution were transferred to six plastic beakers, respectively. To each beaker was added 10.0 ml of TISAB* solution. Then, a fluoride-ion selective electrode and a saturated calomel electrode attached to a pH meter was immersed in the solution which was

* The total ionic strength adjusted buffer (TISAB) was prepared by dissolving with stirring approximately 57 ml of glacial acetic acid, 58 g of NaCl, and 0.3 g of sodium citrate in about 700 ml of distilled water in a 1000 ml beaker. Cool, and add 5 M NaOH until the solution reaches a pH of 5.2-5.5. Dilute the solution to about 1 liter, mix and store in a stoppered plastic bottle.
stirred magnetically for 3 min. The potentials (mV) of these standards and samples were recorded and a plot of the potential versus the log of the concentrations of the standards constructed. The ppm of fluoride in the sample was calculated.

Determination of phosphorus: A portion of residual solution and a series of phosphate standard solutions were analyzed by a monybdovanadophosphoric acid method for the colorimetric analysis of phosphate (7).

Determination of Calcium: A portion of residual solution was pipetted out and the phosphate removed by extraction with n-butyl alcohol-chloroform (1:1) and sodium molybdate solution. The calcium was determined by titration (7,8).

Results and Discussion

Fluoride, phosphorus and calcium in teeth of Guangzhou residents were determined before and after water fluoridation in the period from 1965-1972. The recoveries of fluoride, phosphorus and calcium were 90 ±5%, 100 ±5%, and 100 ±3%, respectively. The recoveries are suitable for routine analysis.

The physiological role of fluoride in the human body is not yet fully understood. Fluoride is generally considered as a normal chemical material in the body, which promotes the mineralization of tooth and bone. An increase of fluoride concentration in the blood will promote mineralization of teeth and raise the fluoride content of teeth (1-4,9). After tooth eruption, fluoride is absorbed onto the surface layer of enamel. Table 1 shows the analytical results of over 80 samples, and indicates that the fluoride content in enamel and dentin of deciduous teeth after water fluoridation for 7 years increased significantly, because most of the deciduous teeth were mineralized during fluoridation. The fluoride content in permanent teeth increased also, but not significantly, as most permanent teeth had erupted before water fluoridation.

Under normal nutritive conditions, fluoride content in teeth and drinking water is positively correlated. In areas where the fluoride concentration in drinking water is 0.0-0.3 ppm, the fluoride content of enamel and dentin are about 100 and 240 ppm, respectively; in areas where the fluoride concentration in drinking water is 1.1-1.2 ppm (in temperate zone), the content in enamel

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The contents of fluoride, phosphorus and calcium in teeth before and after water fluoridation in Guangzhou from 1965 to 1972.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>F in water (ppm)</th>
<th>Tooth sample</th>
<th>F, ppm</th>
<th>p value</th>
<th>% Ca</th>
<th>% P</th>
<th>Ca:P by wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>0.2-0.3</td>
<td>deciduous</td>
<td>103.0 ±40.1 (16)</td>
<td>> 0.05</td>
<td>35.58 ±6.18</td>
<td>17.19 ±2.67</td>
<td>2.07:1</td>
</tr>
<tr>
<td>1972</td>
<td>0.6-1.0</td>
<td>teeth</td>
<td>137.1 ±44.2 (14)</td>
<td>< 0.01</td>
<td>34.95 ±4.04</td>
<td>15.52 ±1.81</td>
<td>2.25:1</td>
</tr>
<tr>
<td>1965</td>
<td>0.2-0.3</td>
<td>permanent</td>
<td>121.3 ±53.6 (23)</td>
<td>> 0.05</td>
<td>34.28 ±2.13</td>
<td>16.95 ±1.48</td>
<td>2.03:1</td>
</tr>
<tr>
<td>1972</td>
<td>0.6-1.0</td>
<td>teeth</td>
<td>138.9 ±89.8 (27)</td>
<td>> 0.05</td>
<td>33.90 ±2.80</td>
<td>16.15 ±1.96</td>
<td>2.10:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dentin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
</tr>
<tr>
<td>1972</td>
</tr>
<tr>
<td>1965</td>
</tr>
<tr>
<td>1972</td>
</tr>
</tbody>
</table>

*p presents the number of case.

Fluoride
and dentin are about 130 and 360 ppm, respectively (1-4). In Guangzhou, before fluoridation, fluoride concentration in the water supply was 0.2-0.3 ppm. The average content of fluoride in enamel and dentin of deciduous teeth was 103.0 and 219.1 ppm, respectively; and that of permanent teeth was 121.3 and 311.5, respectively. After fluoridation (0.6-1.0 ppm in water) for 7 years, the average content of fluoride in deciduous teeth was 137.1 and 320.2 ppm, and that of permanent teeth 138.9 and 345.5 ppm, respectively. This result conforms with the reports (3,4) elsewhere.

The ratio of calcium to phosphorus in enamel and dentin was about 2:1 by weight (Table 1). This also conforms with other reports. (1-4).

References

THE QUALITY OF DRINKING WATER AND HOT SPRING WATER FROM
AN ENDEMIC DENTAL FLUOROSIS AREA IN NORTHERN JAPAN

by

K. Matsuda*
Morioka, Japan

SUMMARY: This study was carried out to compare the quality of the drinking water consumed by school children living in a dental fluorosis area of the Tsugaru Plain in northern Japan and various hot spring water samples in and around the plain. The levels of F- ions in drinking water, which was supplied from 22 deep wells, were significantly correlated with those of Cl- ions, indicating that these wells had a common source. Concentrations of Na+, Cl-, HCO\textsubscript{3}- ions, and total residue, as well as F- ions, were higher than those of ordinary underground water. The order of levels of major cations in drinking water agreed with that of hot spring water in Japan. According to 1) the levels of pH and 8 trace elements, 2) the relationship between the levels of Ca2+, Mg2+, and HCO\textsubscript{3}- ions, and 3) the IR absorption spectra for the total residue, the quality of the drinking water was similar to that of the three hot springs near the wells. These results suggest that these two kinds of underground water passed through a similar stratum. On the other hand, F-/Cl- ratios for drinking water were higher than those of the three hot springs, suggesting that the F- ions in the drinking water did not come from the three hot springs.

KEY WORDS: Deep well; Dental fluorosis; Drinking water; Hot spring water; Northern Japan.

Introduction

Dental fluorosis (mottled teeth) has been reported to be widespread among students at two neighboring primary schools on the Tsugaru Plain in northern Japan whose drinking water was supplied from 22 deep wells (1-3). Concentrations of sodium, chloride ions, and total residue (T-Re), as well as fluoride ions, were higher than those of ordinary underground water uncontaminated by either hot spring water or sea water which indicated the possibility that the hot spring water affected the plain's drinking water. In this study, the concentration of trace elements, as well as the major chemical components, were determined for both drinking water and water samples from the various hot springs in and around the plain. Furthermore, the quality of drinking water was compared with the quality of hot spring water in order to investigate the possibility that drinking water was contaminated by hot spring water.

* Department of Hygiene and Public Health, School of Medicine, Iwate Medical University, Morioka, Japan. Presented at the 14th Conference of the International Society for Fluoride Research, Morioka, Japan, June 12-15, 1985.
Materials and Methods

In January, 1977, samples of drinking water were taken from 22 wells (150 to 300 m deep) which were distributed within a 3 km radius. Water samples were also collected from 11 hot springs, three of which were located 2-7 km from the wells; others were located outside the plain at a distance of 20 to 30 km from the wells (Figure 1). The F⁻ ion concentration was determined by the ion selective electrode method (ORION 94-09), Cl⁻ by Mohr's method, and Na⁺ by flame photometry. Both Ca²⁺ and Mg²⁺ were determined by atomic absorption spectrometry (HITACHI 508A), and IR absorption spectra for the total residue were obtained by the KBr tablet method (JEOL LAR-2). In November, 1977, water samples were also collected from 6 of the 22 wells and from the three hot springs near the wells. These samples were analyzed for 8 trace elements including Au, Be, Ge, As, Sb, Bi, Se, and Co, by atomic absorption spectrometry with a carbon tube atomizer after coprecipitation with zirconium hydroxide (HITACHI 170-50, PERKIN ELMER HGA-2100) (4).

Results and Discussion

The results obtained from analysis of the drinking water samples are shown in Table 1. The concentration of F⁻ ions ranged from 0.30 to 2.27 ppm. Levels of F⁻ ions in the samples from the wells were significantly correlated with those of total residue (r = 0.827, p < 0.001) and Na⁺ ions (r = 0.871, p < 0.001), but not with the levels of Ca²⁺, Mg²⁺, and HCO₃⁻ ions, nor total hardness.

Data for various hot spring water samples are also shown in Table 1. The concentrations of F⁻ ions ranged from 0.41 to 3.57 ppm. The levels in milliequivalents of the Na⁺ and Cl⁻ ions, whose ratios were from 0.9 to 1.2 in almost all hot spring water, were nearly equal (r = 0.995, p < 0.001), indicating that both ions were dissolved as sodium chloride. For drinking water, although the levels of Ca²⁺, Mg²⁺ ions, and thus total hardness, were as low as those of average river water in Japan, the levels of F⁻, Cl⁻, HCO₃⁻, and Na⁺ ions, as well as total residue of samples from most of the wells, were higher than those of ordinary underground water which was uncontaminated by either hot spring water or sea water.

Order of cation levels: According to Iwasaki (5), the order of levels of major ions was Ca²⁺ > Mg²⁺ > Na⁺ > K⁺ > Li⁺ > Li⁺. The order of the anion levels in drinking water samples was F⁻ > Cl⁻ > HCO₃⁻ > SO₄²⁻ > NO₃⁻ > NO₂⁻ > PO₄³⁻ > CO₃²⁻.
Table 1

| Analysis of Drinking Water and Hot Spring Water |
|--------------------------|--------------------------|
| Drinking water: (22 wells) | Hot spring water: |
| Temp. (°C) | pH | RpH | F⁻ | Cl⁻ | HCO₃⁻ | Na⁺ | Ca²⁺ | Mg²⁺ | Total hardness | T-Re* |
| 23.0 | 8.3 | 8.5 | 0.90 | 59 | 154 | 84 | 11.7 | 2.1 | 38 | 322 |
| 1.7 | 0.3 | 0.1 | 0.48 | 55 | 19 | 38 | 4.2 | 1.4 | 15 | 95 |
| 21.8 | 7.4 | 8.5 | 0.30 | 9 | 125 | 42 | 4.8 | 0.5 | 14 | 219 |
| 27.2 | 8.6 | 8.8 | 2.27 | 246 | 191 | 204 | 21.6 | 4.6 | 70 | 656 |

Temp. (°C)	pH	RpH	F⁻	Cl⁻	HCO₃⁻	Na⁺	Ca²⁺	Mg²⁺	Total hardness	T-Re*	
Itayanagi mean	48	8.2	8.5	2.81	3724	535	2520	41.2	5.5	130	6871
Takamatsu mean	43	8.2	8.5	2.37	617	266	475	15.8	1.1	44	1382
Tsuruta mean	85	7.6	8.7	0.41	351	643	418	15.4	32.7	163	1271
Kuroishi mean (2 sources)	50	7.4	8.2	2.58	306	103	286	32.6	1.0	85	1070
Owani mean (4 sources)	60	7.0	8.3	3.28	982	160	703	193	7.4	512	2560
Kuropasski mean	45	5.9	8.3	3.11	613	118	451	149	4.3	359	1790
Ikarikaseki mean (2 sources)	67	7.3	8.4	3.57	1205	226	903	221	13.1	606	3125

Concentration of ions, Total hardness, and T-Re in ppm. CaCO₃ ppm., based on the content of Ca²⁺ and Mg²⁺ ions.

Total residue after drying at 110°C.

cations in most mineral and hot spring water in Japan is Na⁺ > Ca²⁺ > Mg²⁺ regardless of the temperature and the quality of the water. This order, which is thought to depend on the amount of metals in the stratum, is different from that of river water (Ca²⁺ > Na⁺ > Mg²⁺) and sea water (Na⁺ > Mg²⁺ > Ca²⁺), but is the same as the order obtained for our drinking water samples. This order for the present hot spring water was Na⁺ > Ca²⁺ > Mg²⁺, except for the Tsuruta Hot Spring whose order was Na⁺ > Mg²⁺ > Ca²⁺.

Ion exchange: In general, the concentrations in mEq/l of Ca²⁺ ions have been found to be equal to those of HCO₃⁻ or SO₄²⁻ ions when the calcium salts in the stratum are dissolved and the ions added to hot spring water (6). The present data are not in agreement with this finding. However, as shown in

Figure 2

Relationship between the Levels of Chloride and Sodium Ions in Drinking Water

Figure 3

Relationship between the Levels of Bicarbonate Ions and Major Cations in the Drinking Water

Fluoride
A significant correlation was obtained between the levels of Na+ and Cl− ions \((r = 0.977, p < 0.001)\); the levels of Na+ ions greater than about 2 mEq/l were equal to those of Cl− ions. As shown in Figure 3, when the excess of Na+ ions to Cl− ions was added to \([\text{Ca}^{2+}] + [\text{Mg}^{2+}]\), the total concentrations of \([\text{Ca}^{2+}] + [\text{Mg}^{2+}] + ([\text{Na}^+] - [\text{Cl}^-])\) became nearly equal to those of [HCO3], probably due to the partial replacement of Ca2+ and Mg2+ ions by Na+ ions. Thus, an ion exchange phenomenon, generally taking place in hot spring water, was possibly also taking place in the sources for the present drinking water samples. As described above, the quality of drinking water was similar to that of hot spring water. Indeed, according to the following: 1) the relationship between the levels of Ca2+, Mg2+ and HCO3− ions, 2) RΔpH, 3) IR absorption spectra for the total residue, and 4) the levels of 8 trace elements, the quality of the water samples from the wells was similar to that of the three hot springs near the wells.

Relationship between the levels of Ca2+, Mg2+ and HCO3− ions: As shown in Figure 4, analysis of the relationship between levels of [HCO3] and \([\text{Ca}^{2+}] + [\text{Mg}^{2+}]\) showed that the samples from the three hot springs near the wells were high in HCO3− ions, whereas samples from hot springs outside the plain were high in Ca2+ and Mg2+ ions. In contrast, samples of drinking water were low in Ca2+ and Mg2+ ions but were high in HCO3− ions; they belonged to the group consisting of the three hot springs near the wells.

RΔpH: The values of RΔpH varied among hot spring groups, although those within each group were almost the same. The level of RΔpH for the three hot springs near the wells was about 8.5, which is almost the same as that for the drinking water. Thus, it is probable that, except for the carbonate group (CO3, H2CO3, HCO3, and CO32−), the factors which affected the pH values were common to the samples from the 22 wells and the three hot springs.

IR absorption spectra: In order to further determine the effect of the stratum on water quality, IR absorption spectra for total residue were obtained. This analysis provided valuable information because the spectra do not reflect substances having ionic bonds (e.g. sodium chloride) which were present in large quantities in the ion rich samples. The IR absorption spectra for the samples from the three hot springs near the wells were similar and almost the same as those for the drinking water from the 22 wells (Figure 5), whereas those for the samples from other hot springs were different (Figure 6).

Trace elements: Concentrations in ppb of trace elements determined for samples from 6 of 22 wells and from the three hot springs near the wells are shown in Table 2. Levels of germanium varied markedly compared with the
IR Absorption Spectra for the Total Residue of the Drinking Water (representative sample of the 22 wells) and the Water from the Three Hot Springs near the Wells.

Figure 5

IR Absorption Spectra for the Total Residue of the Hot Spring Water

Fluoride
Table 2

Concentrations (ppb) of Trace Elements in Drinking Water and Hot Spring Water

<table>
<thead>
<tr>
<th></th>
<th>Au</th>
<th>Be</th>
<th>Ge</th>
<th>As</th>
<th>Sb</th>
<th>Bi</th>
<th>Se</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6 wells)</td>
<td>mean</td>
<td>0.33</td>
<td>0.020</td>
<td>1.47</td>
<td>0.82</td>
<td>0.88</td>
<td>0.00</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.09</td>
<td>0.002</td>
<td>0.76</td>
<td>0.09</td>
<td>0.06</td>
<td>0.00</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>min.</td>
<td>0.24</td>
<td>0.016</td>
<td>0.00</td>
<td>0.68</td>
<td>0.82</td>
<td>0.00</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>0.47</td>
<td>0.022</td>
<td>2.32</td>
<td>0.92</td>
<td>0.96</td>
<td>0.00</td>
<td>2.33</td>
</tr>
<tr>
<td>Hot Spring Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itayanagi</td>
<td>0.37</td>
<td>0.024</td>
<td>5.30</td>
<td>1.17</td>
<td>1.07</td>
<td>0.00</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>Takamasu</td>
<td>0.39</td>
<td>0.028</td>
<td>1.63</td>
<td>0.89</td>
<td>1.07</td>
<td>0.00</td>
<td>2.45</td>
<td>0.55</td>
</tr>
<tr>
<td>Tsuruta</td>
<td>0.40</td>
<td>0.029</td>
<td>0.00</td>
<td>0.99</td>
<td>1.13</td>
<td>0.00</td>
<td>2.23</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>0.39</td>
<td>0.027</td>
<td>2.31</td>
<td>0.99</td>
<td>1.09</td>
<td>0.00</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Other trace elements. On the whole, levels of these elements in drinking water were not different from those in samples from the three hot springs. The above described results together suggest that water from these wells and from the three hot springs passed through a common stratum.

F^- and Cl^- ions: Figure 7 shows the monthly variations of levels of F^- and Cl^- ions in drinking water from 23 wells between December, 1974 and August, 1975 (7). Even when the levels of F^- ions varied, the ratios of F^- ions to Cl^- ions were generally constant ($r = 0.949$, $p < 0.001$), indicating that these wells had a common source. As shown in Figure 8, concerning the ratios of levels of F^- ions to Cl^- ions, the drinking water, compared with hot spring water, was rich in F^- ions. This finding suggest that the F^- ions in the drinking water did not result from dilution of hot spring water with circulating underground water having low ion concentrations.

Figure 7

Monthly Variation in the Levels of Fluoride and Chloride Ions in the Drinking Water from the 22 Wells (after Matsuda, K. et al., 1978)

$r=0.949$ ($p<0.001$)

$y=-48.5 + 121.6x$
Conclusion

As described above, the relationship between levels of F^- and Cl^- ions in drinking water showed a significant correlation, suggesting that the drinking water from 22 wells had a common source. There is a possibility that hot spring water contaminated the drinking water, because its F^- ions level, total residue, etc. were higher than those of ordinary underground water. Indeed, 1) the levels of pH and trace elements, 2) the relationship between the levels of Ca^{2+}, Mg^{2+} and HCO_3^- ions, and 3) the IR absorption spectra for the total residue all indicate a similarity between drinking water and the three hot springs near the wells. These results suggest that these two kinds of water passed through a common stratum. However, it is highly unlikely that the F^- ions in the drinking water came from the three hot springs because, as shown in Figure 8, the F^-/Cl^- ratios of the drinking water were higher than those of the three hot springs.

Consequently, when drinking water is obtained from deep wells, there is the possibility (and risk) that high levels of F^- ions may be present which can cause dental fluorosis, even if this well water is not contaminated by hot spring water.

Acknowledgement

Gratitude is expressed to Professor Y. Takaesu, Tokyo Dental College (Chiba, Japan) for his support during this investigation; to Professor A. Sato, Seikatsu Gakuen Junior College (Morioka, Japan) for his suggestions concerning the analysis; Professor Ming-Ho Yu, Huxley College of Environmental Studies, Western Washington University (U.S.A.), for his comments on this manuscript; and to Assistant Professor P. Langman, Iwate Medical University (Morioka, Japan) for his assistance regarding English usage.

References

LATE RESPONSES IN SKELETAL FLUOROSIS

by

J.M.K. Murthy, T.E. Anandavalli, and D.R. Reddy*
Hyderabad, India

SUMMARY: In fifteen proven cases of skeletal fluorosis motor nerve conduction velocities of ulnar, median and lateral popliteal nerves were studied electrophysiologically. Electromyography was done in the muscles supplied by C5 root. Late responses, 'F' wave and 'H' reflex, showed unequivocal evidence of neurogenic lesion, with normal motor conduction velocities and delayed or absent 'F' and 'H' latencies.

KEY WORDS: Electromyography; 'H' reflex; Nerve conduction velocities.

Introduction

There is considerable controversy regarding the single case report of skeletal muscle involvement in skeletal fluorosis in industry. The myopathic and myelopathic features observed were attributed to the direct action of the fluoride ion on these tissues because no evidence of spinal cord or nerve root compression was observed (1,2). Similar myopathic changes, attributable to fluoride, were also reported in experimental studies by Kaul and Susheela (3,4). In earlier studies in human fluorosis, from this department, evidence of neurogenic atrophy was shown. The nerve lesion in fluorosis was thought to be located either in the nerve root or in the peripheral nerve (5,6). The aim of the present study was to determine the location of the nerve lesion in skeletal fluorosis.

Methods and Materials

Fifteen established cases of skeletal fluorosis, 5 females and 10 males (aged 21 to 40 years), were selected at random. Detailed clinical history was recorded and a thorough clinical examination was conducted with special reference to the nervous system.

Electrophysiological investigation: Motor nerve conduction velocities were studied in the median, ulnar and lateral popliteal nerves. Electromyography was done in the muscles supplied by C5 root, namely deltoid, supraspinatous, triceps and brachioradialis according to the method described earlier (6). Late responses, 'F' wave and 'H' reflex were studied by the Lambert and Daube method (7).

Results

Both peripheral motor nerve conduction velocities in all three nerves studied and compound action potentials were within normal range (Table 1). Electromyographic studies revealed evidence of a neurogenic lesion in the muscles studied in 13 patients. Whereas clinical evidence of muscle involvement

* From the Department of Neurology and Neurosurgery, Osmania Medical College, Hyderabad, India.
was seen in only 8 patients (Table 2), late responses were abnormal in all patients. 'F' wave responses of the ulnar nerve (Abductor degiti minimi) were not elicitable in 7 patients (Table 3). 'H' reflex was not elicitable in 7 patients on both sides and in 3 the difference in the latencies was more than 2 m sec.

Table 1
Late Responses in Fluorosis

<table>
<thead>
<tr>
<th>Abnormal Late Responses</th>
<th>Normal Late Responses</th>
<th>Abnormal Late Responses</th>
<th>Normal Late Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal NCS*</td>
<td>Abnormal NCS</td>
<td>Abnormal NCS</td>
<td>Normal NCS</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*NCS: Nerve conduction studies

Table 2
Electromyographic Findings

<table>
<thead>
<tr>
<th>Muscles Tested</th>
<th>Clinical Involvement</th>
<th>Electromyographic Evidence of Neurogenic Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Wasting/Weakness)</td>
<td></td>
</tr>
<tr>
<td>Supraspinatus</td>
<td>7</td>
<td>10 (3)</td>
</tr>
<tr>
<td>Deltoid</td>
<td>9</td>
<td>13 (4)</td>
</tr>
<tr>
<td>Biceps</td>
<td>8</td>
<td>11 (3)</td>
</tr>
<tr>
<td>Brachio Radialis</td>
<td>5</td>
<td>8 (3)</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicate number of patients who showed evidence of neurogenic lesion on EMG without clinical involvement.

Table 3
Late Responses in Fluorosis

<table>
<thead>
<tr>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADM (m sec)</td>
<td>Soleus (m sec)</td>
</tr>
<tr>
<td>Controls</td>
<td>26.6 (21-32)</td>
</tr>
<tr>
<td>Patients</td>
<td>31.18 (29-34)*</td>
</tr>
</tbody>
</table>

* Not elicitable in 7 patients. ** Right and left difference more than 2-3-m sec in 3 patients and not elicitable in 7 patients.

Discussion

In recent years, many investigators have been using monosynaptic H reflex and the F response, which is not a reflex, to evaluate the function of the peripheral nervous system (8-10). Whereas conduction only in a motor axon is tested by 'F' response latency, 'H' reflex latency gives information about activity in large afferent (Ia) as well as efferent fibers (10,11). These delayed...
latencies assess conduction in the proximal segment of both motor and sensory axons as well as excitability of the anterior horn cell pool. Abnormal prolongation of minimal late response latencies in entrapment neuropathies is an important adjunct to routine motor and sensory nerve conduction studies. Appropriate abnormalities of late responses have been recorded in surgically proven thoracic outlet syndrome (12), and root compression syndromes affecting S₁/S₂ roots (8,13). In this study electromyographic features are neurogenic in nature. Because the muscles supplied by one root were tested it can constitute evidence of root lesion.

Conclusion

Thus, from this study, it can be concluded that the nerve lesion is located in the root and that this is the cause of muscle involvement in skeletal fluorosis.

References

Fluoride
RELATIONSHIPS BETWEEN IONIC FLUORIDE, TOTAL FLUORIDE, CALCIUM, PHOSPHORUS AND MAGNESIUM IN SERUM OF FLUOROSIS PATIENTS

by

C.S Li, J.C. Gi, J.Y. Fan, W. Yin, X.P. Liang
Tianjin, China

SUMMARY: The fluoride concentration in serum has been determined by both the AIF method and Ion Selective Electrode method. Ion Selectrode has been used to estimate free fluoride ion (F⁻). The AIF method was used to estimate total fluoride TF (ionic fluoride plus non-ionic fluoride) by measuring the molecular absorption intensity of AIF with atomic absorption spectrophotometer. F⁻, TF, Ca, P, Mg were measured in serum of healthy human adults and fluorosis patients. Significant differences have been found between the two groups: the ratio of ionic fluoride to total fluoride, F⁻/TF, and the ratio of ionic fluoride to calcium, F⁻/Ca. A high correlation between two groups: phosphorus and ionic fluoride have also been found. The findings correspond with the clinical symptoms, which might be useful in early diagnosis, in the study of the mechanism of fluorosis and in evaluating therapeutic results.

KEY WORDS: AIF molecular absorption spectrometry; Ionic fluoride; Non-ionic fluoride; Ratio of ionic fluoride to total fluoride (F⁻/TF); Total fluoride.

Introduction

To evaluate the effect of fluoride on human health, a number of studies have been done with ionic fluoride in serum. But no reliable method has been available for the determination of ionic fluoride in human serum because of its extremely low concentration. Usually serum ionic fluoride concentration in healthy human adults is less than 10^{-6}M, which is a limit of fluoride electrode detection. Thus, reported values vary over a wide range.

Recently Tsunoda (1), Chiba (2), Fujimori et al (3) reported the total fluoride concentrations in serum (ionic fluoride plus non-ionic fluoride) by AIF molecular absorption spectrometry method, which is currently satisfactory for determination of serum fluoride. By means of this method we (4) have estimated total serum fluoride and compared it with ionic fluoride. We have found the ratio of F⁻/TF in patients with fluorosis is larger than in healthy humans and the F⁻/TF values related to the degree of fluorosis correspond with clinical symptoms (preliminary report).

Methods and Materials

Serum ionic fluoride was determined with an electrode specific for the fluoride ion. Serum total fluoride was determined (4) by measuring molecular

* From the Institute of Endocrinology, Tianjin Medical College Hospital, Tianjin, China.
absorption intensity of AIF with atomic absorption spectrophotometer (Instrumentation Laboratory Video 22 Atomic Absorption Spectrometer, IL Visimax II platinum lamp, IL 655 CTF controlled-temperature furnace, IL 254 Fastacil (Flame/Furnace Aerosol Sampling Technique with Automatic Calibration) – Deuterium Lamp background correction (Tables 2, 3, 4).

Table 2

Atomic Absorption Instrumental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow Cathode Lamp Current</td>
<td>10 mA</td>
</tr>
<tr>
<td>Wavelength</td>
<td>227.5 nm</td>
</tr>
<tr>
<td>Bandpass</td>
<td>0.15 nm</td>
</tr>
<tr>
<td>Analysis Mode</td>
<td>A - BKG</td>
</tr>
<tr>
<td>Integration Time</td>
<td>4 sec., peak height</td>
</tr>
</tbody>
</table>

Table 3

Graphite Atomizer Instrumental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge Gas: N₂ or Ar</td>
<td></td>
</tr>
<tr>
<td>Graphite Cuvette: Round Coated</td>
<td></td>
</tr>
<tr>
<td>Analysis Program:</td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>Time (sec)</td>
<td></td>
</tr>
<tr>
<td>Injection 1</td>
<td></td>
</tr>
<tr>
<td>drying</td>
<td>150</td>
</tr>
<tr>
<td>ashing</td>
<td>700</td>
</tr>
<tr>
<td>stop</td>
<td></td>
</tr>
<tr>
<td>Injection 2</td>
<td></td>
</tr>
<tr>
<td>drying 2</td>
<td>150</td>
</tr>
<tr>
<td>ashing 2</td>
<td>700-850</td>
</tr>
<tr>
<td>atomization and measurement</td>
<td>2000</td>
</tr>
</tbody>
</table>

Table 4

IL 254 (FASTAC) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>5 sec.</td>
</tr>
<tr>
<td>Deposition</td>
<td>20 sec.*</td>
</tr>
<tr>
<td>Repeats</td>
<td>as desired</td>
</tr>
<tr>
<td>Aspiration Rate</td>
<td>4.0 ml/min</td>
</tr>
<tr>
<td>* varies with detection limit demands</td>
<td></td>
</tr>
</tbody>
</table>

Calcium, phosphorus, and magnesium are estimated by absorption spectrophotometry methods. All chemicals are analytical grade. Fluoride standards were established by dissolving sodium fluoride in non-ionic water.

Results

The relationships between F^-, TF, Ca, P, Mg in serum of healthy human adults and fluorosis patients are presented in Table 1.

Significant correlations have been found (F^-, TF/Mg, $p < 0.05$; P, F^-/TF, F^-/P, F^-/Mg, F^-/Ca, Ca/P, TF/P, P/Mg $p < 0.01$). Changes in serum of fluorosis patients besides F^-, P concentrations also affect the ratios of the concentrations of other components. These findings might be useful in early diagnosis, in the study of the mechanism of fluorosis, and in evaluating therapeutic results.

Discussion

It is well known that a large part of serum fluoride is non-ionic fluoride in addition to ionic fluoride. In previous studies it was noted that non-ionic fluoride did not have any biological activity. For this reason only ionic fluoride has been determined in the past. In a current study, a positive correlation has been shown (4) in the ratio of serum ionic fluoride to non-ionic fluoride comparing healthy human adults with fluorosis patients. When serum ionic fluoride
Table 1

Relationship between F^-, TF, Ca, P, Mg, in Serum in Healthy Human Adults and Fluorosis Patients

<table>
<thead>
<tr>
<th></th>
<th>Healthy Human Serum</th>
<th></th>
<th>Patients</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Means (N)</td>
<td>±S.D.</td>
<td>Means (N)</td>
<td>±S.D.</td>
<td></td>
</tr>
<tr>
<td>F^- (μg/ml)</td>
<td>0.049 (33)</td>
<td>0.0069</td>
<td>0.081 (21)</td>
<td>0.026</td>
<td>2.122</td>
</tr>
<tr>
<td>TF (μg/ml)</td>
<td>0.313 (33)</td>
<td>0.069</td>
<td>0.363 (21)</td>
<td>0.134</td>
<td>1.555</td>
</tr>
<tr>
<td>Ca (mg/dl)</td>
<td>8.946 (33)</td>
<td>0.804</td>
<td>9.266 (21)</td>
<td>0.840</td>
<td>1.391</td>
</tr>
<tr>
<td>P (mg/dl)</td>
<td>4.226 (23)</td>
<td>0.716</td>
<td>3.004 (21)</td>
<td>0.820</td>
<td>5.270</td>
</tr>
<tr>
<td>Mg (mM/L)</td>
<td>2.593 (32)</td>
<td>0.405</td>
<td>2.621 (20)</td>
<td>0.783</td>
<td>0.146</td>
</tr>
<tr>
<td>F^-/TF (%)</td>
<td>16.431 (33)</td>
<td>4.233</td>
<td>24.579 (21)</td>
<td>12.493</td>
<td>2.885</td>
</tr>
<tr>
<td>F^-/P</td>
<td>0.0118 (23)</td>
<td>0.00248</td>
<td>0.0297 (21)</td>
<td>0.0139</td>
<td>5.788</td>
</tr>
<tr>
<td>F^-/Mg</td>
<td>0.0190 (32)</td>
<td>0.00338</td>
<td>0.0329 (20)</td>
<td>0.0118</td>
<td>5.116</td>
</tr>
<tr>
<td>F^-/Ca</td>
<td>0.547 (32)</td>
<td>0.100</td>
<td>0.881 (21)</td>
<td>0.290</td>
<td>5.075</td>
</tr>
<tr>
<td>TF/Ca</td>
<td>3.531 (32)</td>
<td>0.842</td>
<td>3.872 (21)</td>
<td>1.210</td>
<td>1.264</td>
</tr>
<tr>
<td>Ca/P</td>
<td>2.224 (23)</td>
<td>0.686</td>
<td>3.343 (21)</td>
<td>1.083</td>
<td>4.049</td>
</tr>
<tr>
<td>Ca/Mg</td>
<td>3.508 (32)</td>
<td>0.516</td>
<td>3.771 (20)</td>
<td>1.059</td>
<td>1.036</td>
</tr>
<tr>
<td>TF/Mg</td>
<td>0.123 (32)</td>
<td>0.0309</td>
<td>0.144 (20)</td>
<td>0.0432</td>
<td>2.053</td>
</tr>
<tr>
<td>TF/P</td>
<td>0.0807 (23)</td>
<td>0.0308</td>
<td>0.129 (21)</td>
<td>0.0522</td>
<td>3.668</td>
</tr>
<tr>
<td>P/Mg</td>
<td>1.639 (23)</td>
<td>0.359</td>
<td>1.231 (20)</td>
<td>0.580</td>
<td>2.725</td>
</tr>
</tbody>
</table>

was increasing, serum total fluoride (F^- plus non-ionic fluoride) was decreasing (Table 5); F^-/TF was increasing. Experiments have demonstrated the existence of an equilibrium between serum ionic fluoride and non-ionic fluoride. Thus using F^-/TF as a reference value might be a better indicator than ionic

Table 5

Serum Ionic Fluoride and Total Fluoride in Healthy Human Adults and in Fluorosis Patients

<table>
<thead>
<tr>
<th>Healthy Human Adults</th>
<th>Fluorosis Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>F^- (μg/ml)</td>
<td>TF (μg/ml)</td>
</tr>
<tr>
<td>1. 0.039</td>
<td>0.428</td>
</tr>
<tr>
<td>2. 0.042</td>
<td>0.336</td>
</tr>
<tr>
<td>3. 0.056</td>
<td>0.392</td>
</tr>
<tr>
<td>4. 0.051</td>
<td>0.375</td>
</tr>
<tr>
<td>5. 0.043</td>
<td>0.361</td>
</tr>
<tr>
<td>6. 0.041</td>
<td>0.396</td>
</tr>
<tr>
<td>7. 0.048</td>
<td>0.335</td>
</tr>
<tr>
<td>8. 0.047</td>
<td>0.355</td>
</tr>
<tr>
<td>9. 0.048</td>
<td>0.409</td>
</tr>
<tr>
<td>10. 0.048</td>
<td>0.318</td>
</tr>
</tbody>
</table>

Volume 19, No. 4
October, 1986
fluoride alone. Comparison of ratios of other elements may also be more useful measures of [potential] injury than quantitative amounts. Positive correlations have been found between total serum fluoride to serum calcium and serum magnesium (Figures 1, 2) in fluorosis patients. Although these mechanisms are not clear yet, many experiments suggest that these ratios play a role in the incidence and during the course of fluorosis. Further investigation is indicated.

References

CORRECTION: In the paper "Dry Deposition of Fluorides on Lime Papers" by L. De Temmerman and H. Baeten (FLUORIDE, 19:3, 124-131, July, 1986), the word "emission" was mistakenly substituted by the editor for the author's word "immission" (ambient concentration). The word "immission" should therefore replace "emission" wherever it occurs in the text and on the figures.
SIMPLE METHOD FOR OBTAINING BONE BIOPSY SPECIMENS FOR FLUORIDE ANALYSIS AND SOME PRELIMINARY RESULTS

by

Geoffrey E. Smith
South Yarra, Melbourne, Victoria, Australia

(Abstracted from New Zealand Medical Journal 98:454-455, 1985)

Traditionally, bone samples for fluoride analysis have been obtained either from the iliac crest, ribs, vertebrae, femora or sternum in cadavers or in living subjects, from the iliac crest. The interradicular septum, namely the portion of alveolar bone between the roots of molar teeth which are exposed when the tooth is extracted, is a very convenient piece of bone for analysis. It is both easily obtained, and it has a high turnover rate; moreover, fluoride is known to concentrate in areas of active ossification.

To test the new method, fluoride concentrations in alveolar bone of 24 female subjects were measured, 12 of whom were suffering from so-called repetitive strain injury (RSI). All test subjects resided in a Melbourne fluoridated area. Fluoride content (ppm) of 24 alveolar bone ash samples is presented in Table 1. Fluoride levels in bone from subjects with RSI are, on an average, appreciably higher than those found in subjects not afflicted with RSI, namely up to 3300 (average 2737) in the former and up to 2200 (average 1687) in the latter.

Table 1

<table>
<thead>
<tr>
<th>Patient</th>
<th>Weight (kg)</th>
<th>Age (yr)</th>
<th>F in alveolar bone (ppm)</th>
<th>Patient</th>
<th>Weight (kg)</th>
<th>Age (yr)</th>
<th>F in alveolar bone (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.1</td>
<td>22</td>
<td>1650</td>
<td>1</td>
<td>53.5</td>
<td>24</td>
<td>1700</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
<td>27</td>
<td>2600</td>
<td>2</td>
<td>57.7</td>
<td>22</td>
<td>1400</td>
</tr>
<tr>
<td>3</td>
<td>52.3</td>
<td>24</td>
<td>2950</td>
<td>3</td>
<td>55.9</td>
<td>22</td>
<td>900</td>
</tr>
<tr>
<td>4</td>
<td>51.0</td>
<td>28</td>
<td>2400</td>
<td>4</td>
<td>59.1</td>
<td>28</td>
<td>2200</td>
</tr>
<tr>
<td>5</td>
<td>47.3</td>
<td>20</td>
<td>1700</td>
<td>5</td>
<td>62.7</td>
<td>26</td>
<td>1750</td>
</tr>
<tr>
<td>6</td>
<td>48.2</td>
<td>31</td>
<td>3700</td>
<td>6</td>
<td>56.8</td>
<td>34</td>
<td>2100</td>
</tr>
<tr>
<td>7</td>
<td>51.8</td>
<td>28</td>
<td>3100</td>
<td>7</td>
<td>61.8</td>
<td>37</td>
<td>1900</td>
</tr>
<tr>
<td>8</td>
<td>54.5</td>
<td>26</td>
<td>2850</td>
<td>8</td>
<td>56.8</td>
<td>32</td>
<td>2100</td>
</tr>
<tr>
<td>9</td>
<td>62.7</td>
<td>25</td>
<td>2900</td>
<td>9</td>
<td>64.5</td>
<td>21</td>
<td>1600</td>
</tr>
<tr>
<td>10</td>
<td>56.8</td>
<td>36</td>
<td>3300</td>
<td>10</td>
<td>58.2</td>
<td>19</td>
<td>1200</td>
</tr>
<tr>
<td>11</td>
<td>58.2</td>
<td>30</td>
<td>3100</td>
<td>11</td>
<td>59.5</td>
<td>24</td>
<td>1800</td>
</tr>
<tr>
<td>12</td>
<td>59.1</td>
<td>28</td>
<td>2400</td>
<td>12</td>
<td>56.4</td>
<td>23</td>
<td>1600</td>
</tr>
<tr>
<td>Average</td>
<td>53.0</td>
<td>27</td>
<td>2737</td>
<td></td>
<td>58.7</td>
<td>26</td>
<td>1687</td>
</tr>
</tbody>
</table>

Of the 17 patients whose bones contained 1350-4720 ppm F (mean 3320 ppm) investigated by another team, none was seriously incapacitated. However, all but one complained of vague pains and stiffness in the lower and upper extremities, shoulders, neck and lower back. X-ray examinations revealed bone
changes in vertebrae, legs, knees, ankles and, particularly, in forearms and elbows where there were free bony bodies as well as clear evidence of calcification of tendons and ligaments.

This preliminary study suggests that fluoride accumulation in bones should be closely monitored, particularly in areas with fluoridated drinking water.

KEY WORDS: Alveolar bone; Bone biopsy; Bone fluoride; Fluoride toxicity (or intoxication); Repetitive strain injury.

REPRINTS: 56 Surrey Rd., South Yarra, Melbourne 3141, Victoria, Australia.

REPETITIVE STRAIN INJURY (RSI) AND MAGNESIUM AND FLUORIDE INTAKE

by

G.E. Smith
Melbourne, Victoria, Australia

Repetitive strain injury (RSI), a "new" clinical syndrome, is characterized chiefly by a severe pain in wrists, forearms, hands and fingers. Although to date, the cause and pathogenesis of RSI is obscure, it is clearly related to frequent physical stresses; it seems to involve, mainly, musculoskeletal structures.

In 12 RSI subjects fluoride (F⁻) levels in bone were appreciably higher than 12 appropriate controls. Estimates of dietary intake of RSI subjects, revealed a Mg²⁺ deficit and an excessive F⁻ intake. Fluorotic bone has an increased Mg²⁺ content possibly due to some deposition of MgF₂. The amorphous phase in bone may act as a "reservoir" of ions available to regulate plasma Ca, PO₄, and Mg²⁺ levels. Fluoride accumulates in bone with age, especially in areas of active ossification. A locally raised F⁻ concentration in an osteocyte lacunae (during resorption) could interfere with normal functioning of the cell, or trigger the precipitation of crystalline apatite, or lead to the formation of MgF₂. Any one of these reactions might interfere with the passage of Mg²⁺ ions from the bone "reservoir" into circulating extracellular fluid. A localized Mg²⁺ deficiency could disturb pyrophosphate metabolism and lead to deposition of Ca salts in sensitive areas.

Through adjustment of dietary intake of the previously mentioned 12 RSI subjects which included more Mg²⁺ and less F⁻, eight of the subjects experienced marked relief from previously painful RSI symptoms after a six week test period.

KEY WORDS: Fluoride-magnesium intake; Repetitive strain injury.

REPRINTS: 56 Surrey Rd., South Yarra, Melbourne 3141, Victoria, Australia.

Fluoride
REPEETITIVE STRAIN INJURY, OR INCIPIENT SKELETAL FLUOROSIS?

by
Geoffrey E. Smith
Melbourne, Victoria, Australia

(Abstracted from New Zealand Medical Journal 98:328, 1985)

Chronic fluoride intoxication may play a role in the etiology of some cases of so-called repetitive strain injury (RSI).

Early bone fluorosis is not clinically obvious; often the only complaints of young adults are vague pains in the small joints of the hands, feet, and lower back. Such cases may be misdiagnosed as rheumatoid arthritis or ankylosing spondylitis. As fluoride continues to accumulate in bone, radiologically detectable changes may be diagnostic. They include fascial calcification along tendons and muscular attachments, particularly the interosseous membranes of forearms and legs. Before x-ray detectable deposits build-up in these tissues, microcrystals of hydroxyapatite must be present. Tendonitis and bursitis are occasionally associated with periarticular deposits of hydroxyapatite. A condition called "calcific periarthritis" often mimics acute arthritis.

It is conceivable that some cases of RSI might result from deposition of apatite crystals in and around synovial sheaths and tendons passing through the carpal tunnel.

KEY WORDS: Arthritic symptoms; Incipient skeletal fluorosis; Repetitive strain injury

REPRINTS: 56 Surrey Rd., South Yarra, Melbourne 3141, Victoria, Australia.

PLASMA FLUORIDE AND BROMIDE CONCENTRATIONS DURING OCCUPATIONAL EXPOSURE TO ENFLURANE OR HALOTHANE

by
P. Carlsson*, J. Ekstrand and B. Hallen
Stockholm Sweden

In seven patients exposed to 200 ppm enflurane, the mean pre-exposure plasma concentration of fluoride was 0.78 ±0.26 μmol/l. The increase after 1 hr was significant. After 2 hrs exposure, the mean concentration was 2.14 ±0.61 μmol/l. Thirty minutes after discontinuation of enflurane, plasma fluoride had decreased. Whereas eight hours after discontinuation, the increase was still significant compared to pre-exposure concentrations, it lasted less than 12 hours. The pre-exposure cerebral spinal fluid (CSF) fluoride concentration was 0.39 ±0.08 μmol/l. Compared to increase in plasma that of CSF was smaller and delayed.
Plasma fluoride concentration is influenced by dietary intake. Fluoride, an end-product of enflurane biodegradation, released after anesthesia, is partly incorporated into bone matrix and partly excreted in urine. Renal clearance of fluoride is influenced by urine acidity.

Thus the present study shows that, even if enflurane is the only volatile anesthetic used, the increase in plasma fluoride due to routine occupational exposure is indistinguishable from normal variations.

KEY WORDS: Blood; Bromide; Cerebrospinal fluid; Enflurane; Environmental exposure; Fluoride; Halothane.

REPRINTS: Palle Carlsson, M.D., Department of Anesthesiology, Karolinska Hospital, Box 60500, S-104 01 Stockholm, Sweden

LEVELS OF FLUORIDE IN SALIVA AND URINE DEPENDING ON TYPE OF ANTICARIES FLUORIDE PROPHYLAXIS AND ON DENTAL CARIES RESISTANCE OF CHILDREN

by

E. Kuczynska
Lublin, Poland

(Abstracted from Metabolizm Fluoru, 1982, p. 46)

The investigation was to determine the effect of various methods of anticaries fluoride prophylaxis on the levels of fluoride in two body fluids in children, namely saliva and urine, and to determine whether fluid concentrations and occurrence of dental caries are correlated.

Fluoride was determined with a photocolorimetric method based on a very sensitive reaction with a colored complex of zirconium and eriochromocyanine R. The levels of fluoride in saliva and urine of 162 children aged 10 and 11 years (DMF = 0 or DMF > 4) were determined. The children represented three groups which differed in methods of fluoride anticaries prophylaxis.

Statistical analysis of experimental results led to the following conclusions:

Whereas correlation between the level of fluoride in body fluids (especially urine) and dental caries in children is evident, decisive quantitative description is difficult.

Fluoride level in urine depends on the absorption of this element by the system. The level of fluoride in saliva and urine is significantly dependent on the method of fluoride anticaries dental prophylaxis which is applied.

KEY WORDS: Caries; Fluoride; Saliva; Urine.

REPRINTS: Zakład Stomatologii Zachowawczej Instytutu Stomatologii, AM Lublin, Poland.

Fluoride
PHARMACOKINETICS OF CHRONIC FLUORIDE INGESTION IN GROWING PIGS

by

A. Richard, J. Kragstrup, and F. Nielsen-Knudsk
Aarhus, Denmark

(Abstracted from Journal of Dental Research 64:425-430, 1985)

To study the pharmacokinetics of chronic fluoride administration to growing pigs, data were first obtained on plasma levels in relation to oral dose and secondly on bio-availability, biological half-life, and accumulation of the drug. Detailed quantitative investigations of the accumulation of fluoride in bone and its relation to plasma fluoride have not hitherto been reported. Estimation of biological half-life is a prerequisite for calculation of the experimental periods necessary to achieve steady-state plasma concentrations. The study showed that accumulation of fluoride in bone influences plasma fluoride levels during chronic administration of fluoride to growing pigs. The long biological half-life showed that steady-state plasma levels could not be achieved within the six-month experimental period. Thus, for dose-response studies of dental fluorosis in this animal, it is not possible to achieve steady-state plasma concentrations as a basis for correlations to the degrees of pathological change observed in the teeth.

Mean pre-dose plasma fluoride levels increased from 0.014 mg F⁻/l (SD 0.002, n = 8), prior to the period of fluoride administration, to 0.242 mg F⁻/l (SD 0.038, n = 8) at the end of the experiment. An apparent, mean steady-state plasma fluoride concentration of 0.014 mg/l was observed for controls. Body weight of all animals increased continuously throughout the experiment. Differences between mean weight of experimental and control groups were not significant. Mean fluoride content of cortical bone from fluoride-treated pigs was 1737 mg/kg (SD 309), compared with 129 mg/kg (SD 26) in controls. Corresponding values of trabecular bone were 2836 (SD 200) and 181 (SD 16) mg/kg. This experiment has provided estimates of pharmacokinetic parameters applicable when using the pig for studies of skeletal and dental fluorosis.

KEY WORDS: Chronic F⁻ ingestion in pigs; F⁻ plasma levels; Growing pigs

REPRINTS: Department of Dental Pathology and Operative Dentistry, The Royal Dental College and Institute of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark

Volume 19, No. 4
October, 1986
INHIBITION OF ACID PRODUCTION FROM ORAL BACTERIA
BY FLUORAPATITE- DERIVED FLUORIDE

by

D.S. Harper and W.J. Loesche
Ann Arbor, Michigan, USA

(Abstracted from J. Dent. Res., 65:30-33, 1986)

The inhibitory effect of fluorapatite (FAP)- derived fluoride upon resting cell suspensions of Streptococcus mutans incubated at pH 4.5 and 6.5 was studied using lactic acid production from 0.1% sucrose as an indicator of fermentation activity. Cells incubated with FAP produced significantly less lactic acid than did cells incubated with hydroxyapatite (HAP). Addition of HAP to cell suspensions containing FAP was necessary for inhibition. Incubation with low concentrations of NaF showed significant inhibition in cell suspensions incubated with as little as 0.45 micrograms/mL F at pH 5.0. These results provide further support to the hypothesis that fluoride levels in plaque and enamel, achievable through use of fluoridated water and/or fluoride dentifrices, may produce appreciable inhibition of glycolysis at acidic pH levels readily achieved in plaque. Thus, bacterial acid production may activate plaque and enamel-bound fluoride, resulting in inhibition of further acid production, and thereby contribute substantially to other cariostatic mechanisms of fluoride.

KEY WORDS: Cariostatic mechanism; Fluorapatite; Glycolysis inhibition; Plaque; Streptococcus mutans.

REPRINTS: School of Medicine and Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA

TO THE PROBLEM OF TRACE ELEMENTS AND HYDROCARBONS EMISSIONS FROM COMBUSTION OF COAL

by

M. Bezacinsky, B. Pilatova, V. Jirele, and V. Bencko
Prague, Czechoslovakia

Coal is the major source of energy in Czechoslovakia and likely to remain so until the end of this century. Apart from the chronic air pollution problems associated with emissions of oxides of sulfur and fly ash, attention is now increasingly centered on atmospheric trace elements emitted from coal-fired power plants and on emission of hydrocarbons that are invariably detectable in the combustion product condensate. In virtually all large power plants in Czechoslovakia, measurements were carried out between 1975 and 1981 and the data were compared with data reported from the U.S.A.
A broad spectrum of hydrocarbons found in the condensate of combustion products, originating during the coal mass combustion, seemed to indicate the presence of both burning and pyrolytic processes. Apart from organics, the condensate was found to contain a relatively large amount of fluoride compounds (hundreds of mg/l condensate). A long-term analysis of emissions from a power plant in North Bohemia revealed that the fluoride content ranged between 250 and 480 mg/l. Measurements carried out in a power plant in Central Bohemia indicate that waste gas condensate fluorides range from 136-260 mg/l.

According to arithmetic averages of measurements from about 40 power plants during the years 1975-1980, fluoride from combustion of coal in a coal-fired boiler for power generation was 59.4% of the total amount of element supplied; average of 35 measurements from a single power plant in May, 1980 was 52.2.

Large continuous source of emissions are commonly known to have an adverse effect on the biosphere by producing dust aerosols that contain toxic metals. However, relatively little attention is given to the distribution of fluorides and organic compounds whose presence in urban air may constitute one of the major air hygienic problems to the community.

KEY WORDS: Coal combustion; Fluoride emissions; Hydrocarbon emmissions.

REPRINTS: Institute for Research and Uses of Fuels, 25097 Prague, 9 Bechovice, Czechoslovakia.

TRABECULAR STRESS FRACTURES DURING FLUORIDE THERAPY FOR OSTEOPOROSIS

by

C.M. Schnitzler and L. Solomon
Johannesburg, South Africa

(Abstracted from Skeletal Radiol., 14:276-279, 1985)

Osteoporosis is characterized by reduction in bone mass to a level where fractures occur spontaneously or after minimal trauma. Side effects, such as periarticular pain and swelling in the lower limbs reported to occur on an average of 33.2% of patients exclusively in the lower limbs suggest that mechanical factors play a part. The present paper reports bone changes in patients with "fluoride pains." Eight patients suffered a total of 17 episodes of joint pain and swelling in the lower limbs at varying stages of fluoride treatment. Thirteen of the 17 episodes occurred between 7 and 18 months of therapy; the earliest was encountered at 4, and the latest at 36 months.

In a typical episode, the patient complained of spontaneous onset of moderate to severe pain at the affected site. It reached full intensity in one or two days, accompanied by swelling. It was aggravated by weight-bearing but not by passive joint movement, and was relieved by rest.
Clinical examinations revealed swelling and increased warmth of the affected region. All five affected knee joints showed an effusion. Tenderness in the knee region was located either above or below the joint line, in the ankle area on the anteromedial aspect of the tibia 2 or 3 cm above the joint, and in the heel on all aspects of the hindfoot, including the sole. Treatment consisted of discontinuation of NaF therapy in two, temporary increase of vitamin D dosage in one, and immobilization in a plaster cast in three patients.

Radiographs taken at 6-8 weeks showed features suggestive of a healing stress fracture in every case. The affected sites were the distal tibia and posterior half of the calcaneum in six instances each. All five radionuclide scans showed increased uptake at the site of the lesion. The sites of increased uptake were the distal tibia in two and the calcaneum in three instances. Radiographic signs of a stress fracture were unlikely to be present when the patient first complains of pain. In our cases they appeared 6-8 weeks after the onset of symptoms, in two patients radionuclide scans showed increased uptake of the bone-seeking isotope at an earlier stage.

The authors urge that special caution be exercised in fluoride treatment of patients with marked cortical osteoporosis.

KEY WORDS: Osteoporosis; Sodium fluoride; Spontaneous fracture

REPRINTS: C. M. Schnitzler, M.D., Department of Orthopaedic Surgery, Medical School, York Road, Parktown, Johannesburg 2193, South Africa.

EFFECT OF LOW LEVELS OF FLUORIDE IN SOLUTION ON ENAMEL DEMINERALIZATION IN VITRO

by

H.C. Margolis, E.C. Moreno, and B.J. Murphy
Boston, Massachusetts, USA

To study the effect of low levels of fluoride in solution on in vitro enamel demineralization extracted human teeth were exposed to 0.1 M lactate solutions (at pH 4.3) partially saturated with respect to enamel mineral, which contained between 0.004 and 1 ppm fluoride. Enamel demineralization was monitored by SEM and polarized light microscopy. In the absence of fluoride, rapid enamel demineralization, resulted in formation of cavitations within 72 hours. With the same demineralizing medium containing as little as 0.024 and 0.054 ppm fluoride, a remarkable protection of the enamel surface occurred. Subsurface enamel demineralization, resulted in formation of cavitations within 72 hours. With the same demineralizing medium containing as little as 0.024 and 0.054 ppm fluoride, a remarkable protection of the enamel surface occurred. Subsurface enamel demineralization was, however, observed under these conditions as well as in a solution containing 0.154 ppm fluoride. When demineralizing solution containing 1 ppm fluoride was used, no mineral loss was detected. The inhibition of enamel demineralization was also associated with a
significant uptake of fluoride by enamel mineral. These observations correlate with an increase in solution supersaturation with respect to fluoridated apatitic species. The results were consistent with the hypothesis that the net rate of enamel demineralization will be reduced in a demineralizing medium supersaturated with respect to less soluble fluoridated phases, due to enhancement of the precipitation rate of fluoridated apatitic phases relative to the rate of dissolution of the original enamel surface.

KEY WORDS: Enamel demineralization; Human teeth; F effect on demineralization

REPRINTS: The Forsythe Dental Center, 140 The Fenway, Boston, Mass. 02115.

EFFECT OF FLUORIDE INGESTION ON WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS)

by

Madison, Wisconsin and Dennis Wildlife Center, Bonneau, South Carolina

The effects of the addition of 25 or 50 ppm fluoride (F), as sodium fluoride (NaF), to the rations of 5-month-old male white-tailed deer were similar to those observed in domestic cattle fed similar amounts of fluoride. The ingestion of 50 ppm F for 2 yr resulted in the accumulation of over 7,000 ppm F in bone ash. Accumulation of fluoride in antlers was extensive and occurred more rapidly than in skeletal tissue. Fluoride ingestion resulted in lesions on the developing incisors that were similar, but not identical to those seen in other species. Increased molar wear in the deer fed 50 ppm F was minimal, and no gross pathology of the mandible was observed. Only mild hyperostosis of the long bones was evident.

KEY WORDS: Deer; F in antlers, bone ash, skeletal tissues; Hyperostosis of long bones.

REPRINTS: J.W. Suttie, Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin – Madison, 420 Henry Mall, Madison, Wisconsin 53706, USA
FLUORIDE, TEETH AND BONE

by

Geoffrey E. Smith
Melbourne, Victoria, Australia

(Abstracted from the Medical Journal of Australia 143:283-285, 1985)

Because fluoride is being increasingly used as a drug, the pharmacological
effects of the fluoride ion in humans is of growing concern. 4000 ppm F was
found in cancellous bone ash from bones of some women who had consumed
1 ppm fluoridated water for less than 20 years; fluorotic bone changes were
detected by x-ray, in bones containing 1350-4700 ppm F particularly in elbows
and forearms.

Fluoride, a bone seeker, is cumulative throughout life. To fulfill its
mechanical and biochemical functions bone must be in a dynamic state in
which there is constant remodelling, both in the growing and in the fully
mature skeleton. On the other hand, once tooth enamel is formed, its cellular
activity essentially ceases; it becomes a relatively static, non-vital and expend-
able external surface of the body. Whereas ionic fluoride concentrations in
plasma and calcified tissues generally reflect fluoride intake, these concentra-
tions are not related to intake in a simple linear fashion. Fluoride retention
is variable, not only among individuals and groups but also within individuals
from time to time. Fluoride retention may be increased by decreased efficiency
of kidneys in excreting it (renal clearance rate) or by an increase in the up-
take by calcified tissues.

Fluoride in preformed bone is concentrated mainly in a surface layer of
minerals at the border of the osteocyte lacunae and canaliculae, and fluoride
in extracellular fluid bone is in slow equilibrium with fluoride in this mineral
phase. The interpretation of the osseous lesions in fluorosis rests on the accep-
tance of osteocytic osteolysis as an important mode of bone resorption.
Reliance on osteoclasia as the sole mechanism of bone resorption may be the
prime reason for failure of recognition of pathogenesis of osteopathy in chronic
fluorosis.

The mere fact that fluoride, like lead, mercury, radium, strontium (includ-
ing strontium 90) and cadmium, may be incorporated in apatite does not neces-
sarily mean that it is essential for healthy bone formation. Indeed, it might
be argued that biological apatite is acting in a defensive manner when harmful
ions, such as strontium 90, radium and lead, are removed from the circulating
extracellular fluid and incorporated into the crystal lattice of bone salts.
Recent evidence suggests that sodium fluoride is genotoxic and that fluoride
could completely disrupt the thymidine-adenine link in DNA duplex.

To establish the safety, or otherwise, of fluoride in prevention of caries
and in treatment of osteoporosis, the above-mentioned important points require
further investigation.

KEY WORDS: Bone pathology, Bone F uptake, Bone remodelling, Osseous
lesions, Osteoporosis, Tooth enamel.

REPRINTS: G.E. Smith, DDS, 56 Surrey Rd., South Yarra, Melbourne, Vic-
toria 3141, Australia.

Fluoride
NATURE OF EARLY CARIES LESIONS IN ENAMEL

by

J. Arends and J. Cristoffersen
Groningen, Netherlands

Models based on outer surface protection by absorbed agents, the dissolution-precipitation mechanism, and combinations of these two models, as well as models based on porosity or solubility gradients, are discussed in this paper together with their advantages and disadvantages. Initial enamel lesions formed in vivo have no surface layer initially but develop this mineral-rich layer later. The F level in solid sound enamel does not determine subsurface lesion formation. Furthermore, that in vitro fluoride ions in the liquid at levels approximately equal to 0.02 ppm determine surface layer formation is difficult to explain.

A kinetic mechanism for surface layer formation in vivo is proposed, based on the assumption that F is a main inhibitor in the plaque-covered acidic in vivo situation. The inhibiting fluoride, absorbed onto the crystallite surfaces at OH- vacancies, originates from the so-called fluoride in the liquid phase (FL) between the enamel crystallites. Under acidic conditions (plaque), we have, due to influx of fluoride from saliva or plaque as FL, an aqueous phase in the enamel supersaturated with respect to the mineral for a small distance only.

KEY WORDS: Caries mechanism; Enamel fluoride; Enamel surface.

REPRINTS: Dental School, University of Groningen, Ant. Deusinglaan No. 1, 9713 AV Groningen, Netherlands.
AUTHOR'S INDEX

Alhava, Esko M. 149-150
Alison, N.B. 96
Anandavalli, T.E. 181-183
Anderson, R.E. 36-37
Arends, J. 198
Arnala, Ilkka 149-150
Aromaa, A. 39
Asada, M. 113-116
Baeten, H. 124-131
Bawden, J.W. 33-34
Bedairi, A.M. 43
Bencko, V. 193-194
Berg, Ulla 35-36
Bergmann, J. 153-154
Bezcansky, M. 193-194
Bio, Haixian 95
Blinkhor, A.S. 147-148
Bourbon, P. 71-77
Bronckers, A.L.J.J. 98
Bruun, C. 47
Bullock, Wesley W. 90-91
Burgstahler, A.W. 51-54
Carlsson, P. 190-191
Cei-Al, Zhen 80-86
Chongwan, Z. 18-22
Clay, A.C. 196
Clereburgh, V. 147-148
Colquhoun, John 45-47, 98-100
Cousins, M.J. 33
Creamer, Howard R. 90-91
Crenshaw, M.A. 101-102
Cristoffersen, J. 198
Crokaert, R. 108-112
Cundong, W. 18-22
Czekalski, A. 150
Dabrowski, Z. 78-79
Daijei, H. 18-22
Date, C. 113-116
Daiyan, Zheng 94
deTemmerman, L. 124-131 (cn 187)
Deaton, T.G. 33-34
DeChateau, P. 48
DenBesten, P.K. 101-102
Dominiczak, K. 152
Dominok, B. 22-25
Dominok, C.W. 22-25
Dong-Ming, Cao 80-86
Downer, M.C. 147-148
Dousset, J.C. 71-77
Drinkard, C.R. 33-34
Dziubek, T. 150
Eastman, R.P. 96
Effendi, Ibnu 92
Ekstrand, Jan 33-36, 190-191
Elferink, J.G.R. 157-165
Fan, J.Y. 184-187
Fejerskov, O. 41-42, 47
Feliste, R. 71-77
Finné, E. 108-112
Friis-Hasché, E. 153-154
Gabler, Walter L. 90-91
Galeska, G. 150
Gedalia, I. 97
Geeraerts, F. 108-112
Gi, J.C. 184-187
Gjys, G. 108-112
Gross, Peter L. 100-101
Hall, P. de la M. 33
Hallen, B. 190-191
Hamilton, R.J. 196
Harrell, L.I. 48
Harper, D.S. 193
Hayashi, M. 113-116
He, Weishun 95
Helminen, S. 39
Hiradhar, P.K. 55-57
Hirota, Toshiyuki 34-35
Hodge, H.C. 147-148
Horner, J.A. 96
Iijima, Y. 147
Jacyszyn, K. 26-32
Jain, V.K. 10-13
Jee, W.S.S. 36-37
Jenner, M.A. 33
Jensen, O.E. 102-103
Jianan, Tan 94
Jie, Wang 80-86
Jirele, V. 193-194
Johnson, William C. 86-89
Jun-Qing, Ding 80-86
Junrong, Jiang 189-172
Katayama, T. 147
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kauranen, Pentti</td>
<td>149-150</td>
</tr>
<tr>
<td>Kemp, J.W.</td>
<td>36-37</td>
</tr>
<tr>
<td>Kiviluoto, L.</td>
<td>39</td>
</tr>
<tr>
<td>Klokocki, D.</td>
<td>90</td>
</tr>
<tr>
<td>Knekt, P.</td>
<td>39</td>
</tr>
<tr>
<td>Kohyama, P.</td>
<td>113-116</td>
</tr>
<tr>
<td>Kokubu, Nobuhide</td>
<td>51-54</td>
</tr>
<tr>
<td>Kono, Koichi</td>
<td>34-35</td>
</tr>
<tr>
<td>Kragsrup, J.</td>
<td>41-42, 192</td>
</tr>
<tr>
<td>Kruger, B.J.</td>
<td>94-95</td>
</tr>
<tr>
<td>Kuczynska, E.</td>
<td>191</td>
</tr>
<tr>
<td>Kui-Zhen, Chen</td>
<td>80-86</td>
</tr>
<tr>
<td>Kuntz, D.</td>
<td>38-39</td>
</tr>
<tr>
<td>Kuril, H.</td>
<td>113-116</td>
</tr>
<tr>
<td>Lambrou, D.</td>
<td>47</td>
</tr>
<tr>
<td>Lanxin, Li</td>
<td>169-172</td>
</tr>
<tr>
<td>Larsen, M.J.</td>
<td>47</td>
</tr>
<tr>
<td>Lavado, R.S.</td>
<td>14-18</td>
</tr>
<tr>
<td>Leverett, D.H.</td>
<td>102-103</td>
</tr>
<tr>
<td>Levy, P.</td>
<td>71-77</td>
</tr>
<tr>
<td>Li, C.S.</td>
<td>184-187</td>
</tr>
<tr>
<td>Liang, X.P.</td>
<td>184-187</td>
</tr>
<tr>
<td>Liu, Aihua</td>
<td>95</td>
</tr>
<tr>
<td>Lizhen, Wang</td>
<td>94</td>
</tr>
<tr>
<td>Loesche, W.J.</td>
<td>193</td>
</tr>
<tr>
<td>Luehrs, Dean C.</td>
<td>86-89</td>
</tr>
<tr>
<td>Luoma, H.</td>
<td>39</td>
</tr>
<tr>
<td>Mach, Dr. Zdzislaw</td>
<td>49-50</td>
</tr>
<tr>
<td>Machoy, Z.</td>
<td>4-10</td>
</tr>
<tr>
<td>Majtas, B.</td>
<td>150</td>
</tr>
<tr>
<td>Mandrik, F.L.</td>
<td>38-39</td>
</tr>
<tr>
<td>Margolis, H.C.</td>
<td>195-196</td>
</tr>
<tr>
<td>Marie, P.</td>
<td>38-39</td>
</tr>
<tr>
<td>Markitziu, A.</td>
<td>97</td>
</tr>
<tr>
<td>Masayuki, Karaokea</td>
<td>42</td>
</tr>
<tr>
<td>Matsuda, K.</td>
<td>173-180</td>
</tr>
<tr>
<td>Mattes-Kulig, D.A.</td>
<td>132-137</td>
</tr>
<tr>
<td>Maziere, B.</td>
<td>38-39</td>
</tr>
<tr>
<td>Mazze, R.I.</td>
<td>104</td>
</tr>
<tr>
<td>McKinney, R.V.</td>
<td>96</td>
</tr>
<tr>
<td>Meigiong, Lu</td>
<td>169-172</td>
</tr>
<tr>
<td>Méndez, Maria C.</td>
<td>61-64</td>
</tr>
<tr>
<td>Meyer, Theodore G.</td>
<td>100-101</td>
</tr>
<tr>
<td>Miszta, H.</td>
<td>78-79</td>
</tr>
<tr>
<td>Mitropoulos, G.M.</td>
<td>147-148</td>
</tr>
<tr>
<td>Moore, W.C.</td>
<td>196</td>
</tr>
<tr>
<td>Moreno, E.C.</td>
<td>195-196</td>
</tr>
<tr>
<td>Mut, K.</td>
<td>113-116</td>
</tr>
<tr>
<td>Murat, A.</td>
<td>28-32</td>
</tr>
<tr>
<td>Murphy, B.J.</td>
<td>195-196</td>
</tr>
<tr>
<td>Murthy, J.M.K.</td>
<td>181-183</td>
</tr>
<tr>
<td>Murtomaas, H.</td>
<td>39</td>
</tr>
<tr>
<td>Naidu, M.R.C.</td>
<td>166-168</td>
</tr>
<tr>
<td>Naito, H.</td>
<td>117-121</td>
</tr>
<tr>
<td>Naveau, B.</td>
<td>38-39</td>
</tr>
<tr>
<td>Nielsen-Knudsk, F.</td>
<td>192</td>
</tr>
<tr>
<td>Nikiforova, V.Ya.</td>
<td>45</td>
</tr>
<tr>
<td>Obersztyn, Andrzej</td>
<td>93</td>
</tr>
<tr>
<td>Okasuki, Masayuki</td>
<td>65-70</td>
</tr>
<tr>
<td>Oliveira, J.A.</td>
<td>61-64</td>
</tr>
<tr>
<td>Pandey, G.S.</td>
<td>10-13</td>
</tr>
<tr>
<td>Pashley, D.H.</td>
<td>96</td>
</tr>
<tr>
<td>Patel, C.B.</td>
<td>10-13</td>
</tr>
<tr>
<td>Pawlicka-Klokocka, J.</td>
<td>90</td>
</tr>
<tr>
<td>Pedersen, K. Moller</td>
<td>153-154</td>
</tr>
<tr>
<td>Petersen, P. Erik</td>
<td>153-154</td>
</tr>
<tr>
<td>Platova, B.</td>
<td>193-194</td>
</tr>
<tr>
<td>Plummer, J.L.</td>
<td>33</td>
</tr>
<tr>
<td>Punsar, S.</td>
<td>39</td>
</tr>
<tr>
<td>Put, A.</td>
<td>152</td>
</tr>
<tr>
<td>Rahmatulla, M.</td>
<td>40</td>
</tr>
<tr>
<td>Rajasekar, A.</td>
<td>40</td>
</tr>
<tr>
<td>Raloff, J.</td>
<td>44-45</td>
</tr>
<tr>
<td>Reddy, P. Kantha</td>
<td>166-168</td>
</tr>
<tr>
<td>Reddy, D. Raja</td>
<td>166-168, 181-183</td>
</tr>
<tr>
<td>Reinaudi, N.B.</td>
<td>14-18</td>
</tr>
<tr>
<td>Ribang, Li</td>
<td>94</td>
</tr>
<tr>
<td>Richards, A.</td>
<td>41-42, 192</td>
</tr>
<tr>
<td>Rier-Correa, Franklin</td>
<td>61-64</td>
</tr>
<tr>
<td>Rioufol, C.</td>
<td>71-77</td>
</tr>
<tr>
<td>Rixin, Luo</td>
<td>169-172</td>
</tr>
<tr>
<td>Rugg-Gunn, A.J.</td>
<td>147-148</td>
</tr>
<tr>
<td>Ryckewaert, A.</td>
<td>38-39</td>
</tr>
<tr>
<td>Saloman, l.</td>
<td>97</td>
</tr>
<tr>
<td>Samochowiec, L.</td>
<td>152</td>
</tr>
<tr>
<td>Samuilo, D.</td>
<td>4-10</td>
</tr>
<tr>
<td>Sanders, R.B.</td>
<td>43</td>
</tr>
<tr>
<td>Schild, Ana L.</td>
<td>61-64</td>
</tr>
<tr>
<td>Schnitzler, C.M.</td>
<td>194-195</td>
</tr>
<tr>
<td>Seifert, K.</td>
<td>22-25</td>
</tr>
<tr>
<td>Shaikh, Y.A.</td>
<td>55-57, 121-123</td>
</tr>
<tr>
<td>Shastray, K.V.R.</td>
<td>166-168</td>
</tr>
<tr>
<td>Shizhong, Zhang</td>
<td>169-172</td>
</tr>
<tr>
<td>Siebert, G.</td>
<td>152-153</td>
</tr>
<tr>
<td>Smid, J.R.</td>
<td>94-95</td>
</tr>
<tr>
<td>Smith, Geoffrey E.</td>
<td>103-104, 105-107, 188-189, 190, 197</td>
</tr>
<tr>
<td>Solomon, L.</td>
<td>194-195</td>
</tr>
<tr>
<td>Spak, Carl-Johan</td>
<td>35-36, 48</td>
</tr>
<tr>
<td>Subbareddy, V.V.</td>
<td>151</td>
</tr>
<tr>
<td>Suketa, Yasunobu</td>
<td>138-146</td>
</tr>
<tr>
<td>Suttie, J.W.</td>
<td>196</td>
</tr>
</tbody>
</table>
Author's Index

Sveen, O.V. 102-103
Tai, T. 117-121
Takeda, M. 117-121
Tanaka, H. 113-116
Tanimura, Yoshihisa 34-35
deTemmerman, L. 124-131 (cn 187)
Tewari, A. 151
Thylstrup, A. 47, 153-154
Tian-Siang, Gong 80-86
Tingzhong, Z. 18-22
Tobin, M.L. 196
Totsuka, Tsugumi 138-146
Trautner, K. 152-153
Trykowski, Jan 113-116
Tsuchida, M. 113-116
Tubiana, M. 38-39
Watanabe, Misuzu 34-35
Waldbott, E.M. 155-156
Wenzel, A. 153-154
Whitford, G.M. 96
Wibowo, Djajadi 92
Wolinsky, L. 132-137
Wöltgens, J.H.M. 98
Woodbury, D.M. 36-37
Worthington, H.V. 147-148
Wuyi, Wang 94
Yakubovskaya, Yu. L. 154
Yamasaki, Akira 51-54
Yamashita, M. 117-121
Yanagisawa, F. 113-116
Yanmin, Shen 169-172
Yin, W. 184-187
Yochim, J.M. 43
Yoshida, Yasuhisa 34-35

CORRECTIONS

Acid rain 9
Adenylate cyclase 43
Adolescent 35-36
Adult 51-54
Aerosol 194
AIF molecular absorption spectrometry 184-187
Alkaline phosphatase 26, 36-37
Albumin, egg 86-89
Aluminum effluent discharges, 10-13
factory 150
industry 10-13
metallurgy 26
plant, causes of atmospheric fluoride 24
illness in workers 50
increased fluoride in rice 113
ossification 49
osteoartroses 49
pulmonary problems 50
skin lesions in workers 49
ventricular hypertrophy 50
raw materials needed for 11
refinery 139
reproduction factory 139
smelter 10-13
solid waste discharges from 10-13
Ameloblast 106
Amelogenin 98
American Fund for Dental Health 44-45
Ames test 45
Aminotransferase
Alanine 78-79
Aspartate 78-79
Anesthesia 33, 104
Ankylosing spondylitis 190
Antler, deer 196
Apatite 56-70, 189, 190, 193, 196, 197
Aquatic animal 58-60
Argentina 14
Aromatic fluoride structure of 117-121
toxicity of 117-121
symptoms of poisoning 119
Arthralgia 38-39
Arthritis
osteoe 46
rheumatoid 46
Arthritic symptoms 190
Atherosclerosis 39
Atomic absorption spectrophotometry 66, 139, 174
ATPase 36-37
Australia 94, 103, 105, 155, 188, 189, 190, 197
 Autoradiography 108
Azalea 138-139, 142-145
Bacterial metabolism 93
Ball mill 170
Bauxite 11-12
Bed rock 94
Belgium 108-112, 124
Bicarbonate ion 173-180
Boleophthalmus dussumieri (mud-skimmer) 121-123
Bony body 155
Brain 108-112
Brazil 61
Breast milk 48
Cadaver 149, 188
Cadmium 197
Calcifediol 38
Calcification, periosseus hyperplastic 80-86
Calcium 39, 141, 155, 157-165, 169-172, 173-180, 184, 189
California (USA) 104
Calomel electrode 170
Canaliculae 198
Carbonatapatite 56-70
Caries
 dental 2, 40, 44, 102-103, 132-137, 148, 153-154, 191, 197, 198
 inhibition 47
 in Northwest England 148
 prevalence decline 148
 prophylaxis 44-45
Cariogenic bacteria 93
Cariostatic mechanism 193
Carpal tunnel 190
Cartilage 2, 19
Cat 96
Catla catla (fish) 121
Cattle 61-64, 104, 196
Cell
 formation 98
 integrity 158
Cerebral spinal fluid 190
Chemoraxis 90-91
Child (Children) 35-36, 44, 46, 95, 98-100, 191
China 1, 18, 80, 94, 95, 113, 115-116, 169, 184
Chloride
 atmospheric method of collection 139
 damage to plant cultivars 142
ion 173-180
Cholesterol 71-77
Chromatography on silica-gel coated plate 72
Chromosome aberration 95
Coal 193-194
Cobalt 157
Colorimetric analysis 169-171
Colostrum 48
Conway cell 169-170
Cortisol 36-37
Creatinine 24
Crop 94
Cryolite 1, 10-13
Culture 36-37
Cytochrome c 159, 162
Czechoslovakia 193
Dairy farm 61-64
Danish Environmental Protection Agency 47
Deer 196
Deficiency
 diet 132-137
 lysine 132-137
Denmark 1, 41, 47, 153-154
Dental
 Caries 2, 40, 44, 102-103, 132-137, 148, 153-154, 191, 197, 198
 child health 98-100
 enamel 153-154
 health service 153-154
 hygiene 154
 lesion 61-64
 plaque. See Plaque.
 prophylaxis 153-154
Dentifrice 42, 153-154
Dentine 41
Dentistry, preventive program 44-45
Deposition
 dry 124-131
 velocity of 124-131
Dermatan sulphate 2
Diabetes 35-36
DNA 98, 198
Dust, airborne 14-18
Electron micrograph 68-69
Electromyography 181-183
Electrophoresis 98
Embryotoxicity 154
Emission
 fluoride 194
 hydrocarbon 194
Enamel
 demineralization 195-196
 fluoride 193, 198
 formation (in rats) 101-102
 mottled 61-64
 mottling 46, 151
 surface 198
 tooth
 deciduous 147
 fluoride content of formed 197
Enflurane 104, 190
England 147
Enolase 93
Environment, contamination of 4
Enzyme 152
Epidemiology, oral 98-100
Epiphyseal chondrocyte 18-22
Erythrocyte 26-32
Estrus cycle 43
Eurya japonica 2
Family attitude 153-154
Ferrovanadium 13
Fertilizer, phosphoric 4, 9
Fetal organ 19
Filter paper, impregnated 124-131
Finland 39, 51-54, 149
Finnish National Board of Health, 51
Fish
 eggs of 121-123
 freshwater 121-123
 Flame photometry 174
Flotation method of separation 159-170
Fluorapatite 66, 68-70, 169.
 See also, Apatite
Fluoridation, reduced benefits of 45-47
Fluoride
Fluoride (cont.)
in (cont.)
sodium chloride 55-57
teas 92, 94-95
tooth enamel 33-34, 65, 67, 101-102. See also, Teeth.
urine 26-32, 49, 191
vegetables 4-10
water. See Water.
industrial workers affected by 80-86
insoluble calcium salts caused by 98-100
intake 48
ionic 184-187
intoxication 155-156, 188-189, 190
ion-selective electrode 10, 12, 23, 29, 30, 62, 66, 86-89, 92, 122, 125, 139, 169-170, 174, 184
lanthanum ion-selective electrode 55
levels in
saliva 47
vegetables 4
low serum magnesium caused by 98-100
metabolism 34-35
methods of analysis for 4, 15, 108
molar surface 97
mouthwash 44, 148
mutagenic effects of 95
non-ionic 184-187
optimal intake 103-104
pain 194
particulate 17, 125
penetration 108-112
pharmacokinetics 27
poisoning in
cattle 61-64
humans 3, 26
preparations 103-104
preskeletal chronic poisoning 156
quantitative determination by gas chromatography for 108
Radelkis ion measuring instrument 4
renal clearance of 35, 36
routes of dispersal of 11
salivary 47
sodium 38-39, 87, 194-195, 196, 197
soft tissue 22-25
soil 14-18
spectrophotometric determination of 26-32
Fluoride (cont.)
subgingival use of 90-91
supplements 95, 103-104
synergistic effect with mercury 79
systemic, dental effects of 46, 147
tablets 44, 95, 148, 153-154
tissue preparation for 23
toothpaste 44
topical use of 45, 47, 98-100
total 184-187
toxic effect of 1, 45-47
toxicity 100-101, 103-104
treatment via placenta 18-22
treatment 44-45
urinary 22-25, 34-35, 81
urine, preparation for determination of 23-24
water. See Water.
winds direction 9
Fluorinated aromatic compound, 117-121
Fluorine compounds
permissible concentration of 8
responsible for skin lesions 49
industry 121-123
Fluoroacetamid 95
Fluorosilicate 26
Fluorochrome 41
Fluorosilane 109
Fluorosis
chronic 197
clinical symptoms of 81
dental 18, 61-64, 101-102, 105-107, 153-154, 169-172, 178, 179, 192
double blind test for 155
endemic 1, 18-22, 40, 81, 94
fatal 100-101
incipient 155
increase of 45-47
industrial 80-86
osseous lesions in 187
osto 41-42
preskeletal 3
reduction in humans 2
skeletal 1, 46, 166-168, 181, 183, 190, 192
systemic 100-101
Folia Medica Cracoviensia 49
Food
health 152-153
human 152-153
pet 152-153
Fracture, spontaneous 194-195
Subject Index

France 38-39, 71
Fresen gas chromatographic method 108-112

Gas chromatograph 108-109
Gastric mucosa 96
GDR 22
Georgia (USA) 96
Germany 1, 2
Gingival hyperplasia 63
Gingivitis 153-154
Gladiolus 138-146
Glomerular filtration 166
Glucose-6-phosphate dehydrogenase 2
Glycogen 93, 193
Glycosaminoglycan 2
Gonadotoxicity 154
Guinea pig 71-77, 158
Halothane
 anesthesia 33, 190-191
 toxicity 33, 104
 volatile 33
Hamster 98
Haversian canal 20, 22, 63
Heavy metals toxicology 31
Hemoglobin 58-60
Heparin 27
Hepatocyte 152
Hepatotoxicity 33, 104
Histamine 96
Histomorphometry 38-39
Holland 2
Hot spring water 173-180. See, also, Water.
Howship's lacunae 20
H reflex 181-183
Hydrogen chloride 72-73
Hydrogen fluoride 49
 cause of bronchitis 49
 destruction of SiO2 in buildings 50
Hydrocarbon emission 193-194
Hydroxyapatite 169. See, also, Apatite.
Hydroxylysine 2
Hydrofluoric acid burns 100-101
 workers 35
Hyperostosis 196
Hypocalcemia 53, 100-101

Immature birth 90
India 1, 2, 10, 40, 58, 121, 151, 166, 181

Indonesia 92
Infant 48. See, also, Child.
Intestinal tissue 71-77
Intestine 121-123
Iodine 26
Iodonitrotetrasolium 157-164
Ion-selective electrode 108, 113. See, also, Fluoride ion-selective electrode.
IR absorption spectra 174, 176
Isoflurane 104
Israel 97
Japan 34, 42, 55, 65, 113, 116, 117
 138, 147, 173
Kenya 1
Kidney 24, 78-79, 152, 197
Klotz equation 86-89
 Krebs-Ringer buffer 72
Lactic acid 193
Lanthanum 157
LD50 value 117-121
Lead 197
Lime paper 124-131
Liver 33, 76, 78, 102-112, 121-123, 152
Liverpool (U.K.) 1
Lung 71-77
Lymphocyte 42, 58-60
Lysine 132-137
Machrobrachium rosenbergii (prawn) 121
Magnesium 39, 141, 155, 157, 173-180, 184, 189
Manganese 157
Massachusetts (USA) 100, 195
Mercury 78-79, 197
Methoxyflurane 104
Mevalonate 71, 75-76
Mice 42
Michigan (USA) 86, 193
Microscope
 light 18-22
 method of fixation for 19
 scanning electron 18-22, 95
 method of fixation for 20
Microscopy, polarized light 195-196
Milk 33-34, 48
Mohr's method for chloride determination 174
Monocyte 58-60
Mouse 108
Mouth rinsing 44, 102-103
Mud
cryolite 10
red 10
Mudskipper 58-60, 121-123
Muffle ashing chamber 139
Muscle 121-123
Myocardial infarction 39
Myrica rubra fruit tree 138-139, 144-145

NADPH 157
National Institute of Dental Research 44
National Research Council of Canada 47
Nerve conduction velocity 181-183
Netherlands, The 98, 157, 198
Neutrophil 58-60, 90-91, 157-165
New York (USA) 102
New Zealand 45, 98
Nickel 157
North Carolina (USA) 33, 101

Occult renal disease 166
Oregon (USA) 90
Orion
Fluoride electrode. See Fluoride
ion-selective electrode.

pH meter 92
Osseous lesion 197
Ossification 80-86
Osteoblast 36-37, 42
Osteoclast 38
Osteocyte 61, 63-64, 105, 197
Osteofluorosis 41-42, 64. See, also,
Fluorosis.
Osteomalacia 53
Osteoporosis 38-39, 51, 53, 61-64,
149, 194-195, 197
Osteosclerosis 80-86
Ovarian hormone 43

Pain, periarticular 194-195
Paris 1
pH meter 87, 92, 170
of
cell suspension 193
lactate solution 195
water 173, 176, 179
Phosphate
fertilizer plant 126
processing factory 61-64

Phorbol myristate acetate 157, 159-164
Phospholipase 157-165
Phosphorus 102, 169-172, 184, 189
Photorcolorimetric method of fluoride
determination 191
Physiological ion mobilization 138-146
Pig 41-42, 192
Placenta 18, 19
Plant
cultivars, most sensitive to fluoride injury 138
resistant to fluoride but susceptible to sulfur dioxide 138
indicators for fluoride 138-146
Plants grown in pots 150
Plaque 47, 153-154, 193, 197
Plasma 192
Plaster cast 195
Plenary lectures 1
PMN function 91
Poland 4, 9, 25, 78, 90, 93, 150, 152,
191
Potassium content in gladiolus 138-146
Pollution, environmental 61-64, 138-
146
Prawn 121
Pregnancy 90
Proline content 101
Protein 87
Publications
Fluorides, Effects on Vegetation,
Animals and Humans 3
Fluoride Toxicity 3
Pyrophyte metabolism 155
Rabbit 2, 157-165
Radiograph 195
Radium 197
Rat 33, 34, 43, 78-79, 96, 97, 101-
102, 104, 105-107, 108-112, 117-121,
132-137, 152, 154
RBC 58-60
Red Muntjac cell cultures 95
Renal
failure 34-35
fluoride clearance 34-35
Repetitive strain injury 155, 188-189,
190
Resin column 55
Rice 113-116
Roentgenological characteristics 80-86

Fluoride
Rural dental health 151
Ruthenium Red stain 2
Saliva, human 47, 191
Salmonella 45
Salt, sea 153
Scanning electron microscopy 18-22, 96
Scintillation spectrometer 72
SEM 195
Serum
albumin 87
blood 78-79
Sialic acid 2
Sister chromatid exchanges 95
Skeleton 84
Skim milk powder 132-137
Sludge, vanadium 10-13
Social class 98-100
Sodium
chloride 55-57
fluoride 78-79
ions 173-180
pentobarbital 109
Soil
cultivated 9, 94, 150
minerals and trace elements 99
predominant in Argentina 14-18
saline 14-18
South
Africa 194
Carolina (USA) 196
Spleen 42
Stillbirth 90
Streptococci mutans 93
Strontium 157, 197
Superoxide generation 90-91
Superphosphate production 26, 28, 30
Sweden 35, 190
Swedish Fluoride Commission 47
Switzerland 1, 2
Tea 92, 94-95
Teeth 2, 33-34, 40, 61-64, 65-67, 84, 97, 98, 102-103, 105-107, 147, 155, 169-172, 173, 188, 192, 195-196, 197
Tetrazolium dye 157-165
Texas (USA) 132
Thyroid gland 26
TISAB buffer 12, 55-56, 113, 125, 170
Titration 169, 171
Titrimetry for fluoride determination 15
TRIS-HCl buffer 109
Unfluoridated community 102-103
Urine 26-27, 155, 166, 191
U.S. National Health Interview Survey 51
U.S.S.R. 45, 154
Utah (USA) 1, 2
UV spectrophotometry 66, 87
Vegetation, poisoned 2
Ventricular arrhythmias 100-101
Vitamin D 38-39, 195
Washington, D.C. (USA) 44
WBC 58-60
West Germany 152-153
Wiley mill 139
Wisconsin (USA) 196
Workers, industrial 80-86
X-ray 38, 46, 66, 68, 80-86, 155, 190, 197
