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INTRODUCTION
Biological reduction of molecular oxygen (O2) generates products collec-

tively termed reactive oxygen species (ROS). By accepting a single electron,
O2 is transformed into the superoxide radical anion ·O2

-, which plays a key
role in biological systems. Superoxide radicals are generated under natural
conditions during mitochondrial respiration, by UV-B radiation, and in
phagocytosis of cells engaged in immune response.1 The superoxide radical
anion is the substrate for the most reactive form of ROS ― the hydroxyl
radical (OH·) generated in the Haber-Weiss and Fenton reactions.2

ROS exhibit a wide spectrum of pathogenic properties. Their uncontrolled
overproduction has been implicated in atherosclerosis, diabetes, and in-
flammatory disorders.3,4 They react with methylene groups of polyunsatu-
rated fatty acids (PUFA), initiating the peroxidation of membrane lipids and
producing malondialdehyde (MDA) as one of the end products. Determina-
tions of MDA levels provide a good measure of peroxidation,5 which is
among the chief mechanisms of cell damage leading to necrosis or apopto-
sis.6

Living organisms possess several antioxidative species and mechanisms
protecting them against the harmful action of ROS. These include the en-
zymes superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase
(GSH-Px, EC 1.11.1.9), and catalase (CAT, EC 1.11.1.6), together with
nonenzymatic antioxidants, like selenium compounds, vitamins A, E, and C,
and compounds containing thiol groups. Imbalance between ROS and anti-
oxidants is referred to as oxidative stress.

In recent decades extensive information has accumulated on the role of
fluoride in cellular respiratory processes and associated free radical reac-
tions.1 Fluoride is also known to be an inhibitor/activator of numerous en-
zymes.7,8 Although the relationship in both human and animal fluorosis be-
tween free radical generation, lipid peroxidation, and antioxidant defense
systems has been investigated extensively, these various studies have pro-
duced conflicting results.

CONTRARY FINDINGS
Soni et al studied the influence of sodium fluoride (NaF) intoxication at 5

and 20 mg/kg body mass on some tissues of the rat.9 The lower dose was
accompanied by increased peroxidation of lipids in all examined tissues, i.e.,
liver, kidneys, lungs, intestine, and testes. With the higher dose, peroxida-
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tion continued in the kidneys and intestine, but was inhibited in the liver,
lungs, and testes.

Interesting results were reported by Jain from studies on the peroxidation
of lipids in human erythrocyte membranes incubated in hyperosmotic solu-
tions of glucose (experimental hyperglycemia).10 When glucose was used
alone, peroxidation was faster, but when erythrocytes were preincubated
with fluoride ions, peroxidation was inhibited. A similar protective action of
fluoride was observed by de Ferreyra et al in rat hepatocytes exposed to car-
bon tetrachloride, a well-known stimulator of peroxidation.5 The authors
suggested a rise in reduced glutathione levels caused by fluoride (as
phenylmethylsulphonyl fluoride ― PMSF) with subsequent removal of hy-
drogen peroxide and oxygen free radicals by glutathione peroxidase, and, in
effect, inhibition of peroxidation.

In a report by Chlubek et al, the effect of increasing concentrations of NaF
(2.5, 50, and 500 µM) on lipid peroxidation in the mitochondrial fraction
from human placenta was described.11 Incubation with fluoride induced
MDA formation, but higher concentrations of NaF were less potent in rais-
ing levels of MDA. The strongest effect (highest MDA levels) was observed
with the lowest fluoride concentrations, normally found in plasma of hu-
mans unexposed to environmental contamination with fluorine compounds.
These data support the view that fluoride at relatively low concentrations
stimulates lipid peroxidation, but at high and very high concentrations may
act as inhibitor of MDA generation.

In a study by Gardner and Fridovich, incubation of E. coli mutants with
fluoride protected 6-phosphogluconate dehydratase against the action of su-
peroxide radicals.12 Practically 100% protection was observed at a fluoride
concentration of 10 mM, whereas at a concentration of 0.2 mM, fluoride
protection decreased to around 75% after one hr. It is interesting that E. coli
deprived of SOD are unable to grow in an aerobic environment, because
there is then a fall in the activity of 6-phosphogluconate dehydratase. Re-
sults of this study show that even in the absence of the major antioxidative
enzyme SOD, fluoride is able to protect living cells against the action of
ROS.

A stimulatory activity of fluoride on human erythrocyte CAT was re-
ported by Zawierta et al.13 Erythrocytes from healthy subjects were incu-
bated with 0.25 or 2.5 mM NaF. Changes in CAT activity were observed
with the lower fluoride concentration, while the higher concentration sig-
nificantly reduced MDA levels. No influence of fluoride on SOD and GSH-
Px activity was found.

In a recent study, Chlubek et al elicited hyperglycemia in rats exposed to
50 or 100 ppm fluoride in drinking water during four months and studied the
effect on pancreatic antioxidative systems.14 Cytoplasmic Cu-Zn SOD ac-
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tivity was reduced by 50%, with little effect on mitochondrial Mn-dependent
SOD. No change was observed in GSH-Px activity and MDA levels in pan-
creatic homogenates. Even stronger evidence has been presented by Reddy
et al.15 They reported finding no changes in lipid peroxides, GSH, and vita-
min C levels, as well as in SOD, GSH-Px, and CAT activities in red blood
cells of fluorotic humans and fluoride-intoxicated rabbits.

EVIDENCE FOR INVOLVEMENT OF ROS
In contrast to the above reports, a number of studies on oxidative stress in

fluorotic humans and fluoride-intoxicated animals indicate that generation of
ROS and lipid peroxidation (MDA formation) can be directly induced by
fluoride. Moreover, there is evidence that both ROS and lipid peroxides play
an important role in fluorosis. Shivarajashankara et al showed that rats re-
ceiving 100 ppm fluoride (as NaF) in drinking water for four months have
increased levels of MDA and glutathione (GSH) and higher activity of GSH-
Px in erythrocytes, brain, and liver, but decreased activity of erythrocyte
SOD.16

Another study by Shivarajashankara et al on fluorotic children revealed
the following changes: elevated levels of MDA, decreased GSH levels, in-
creased GSH-Px activity and decreased SOD activity in red blood cells.17

Earlier studies by others reported increased lipid peroxidation,18 increased19

or unaltered levels of GSH,20 decreased activity of GSH-Px and unaltered
activity of SOD in erythrocytes of fluorotic humans.20

In a study published earlier this year, a significant increase in MDA and
enhanced SOD and GSH-Px activities in liver were observed by Guo et al in
rats receiving 50, 100, and 150 ppm fluoride in their drinking water.21

Chinoy and Patel administered 10 mg of NaF/kg body mass during 30
days to female mice and found that cerebral levels of GSH and ascorbic acid
decreased, as well as the activities of SOD, GSH-Px, and CAT.22 These ef-
fects correlated with increased levels of lipid peroxides. Administration of
vitamins C, E, and calcium fully reversed these changes.

Studies reported by Vani and Reddy carried out on mice treated with NaF
(20 mg/kg body mass) for 14 days revealed decreased SOD, CAT, and glu-
tathione transferase (GST) activities in brain and gastrocnemius muscle.23

The effect of fluoride on muscle enzymes was comparatively larger, evi-
dently owing to a greater accumulation of fluoride in muscle than brain.

CURRENT STATUS AND FUTURE NEEDS
The appended Tables 1–6 summarize most of the published studies on

fluoride and oxidative stress in humans and animals. In these tables, special
attention has been paid to the influence of fluoride on the activity of SOD
and GSH-Px (major antioxidative enzymes) and MDA concentrations (indi-
cator of lipid peroxidation).
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There is no doubt that the available results, which often differ signifi-
cantly from one another, depend on many important factors. Among these
factors are: water fluoride levels in fluorotic areas, ages of children and
adults exposed to fluoride in drinking water, animal species, kind of tissue
examined, dose and mode of fluoride exposure,  time of exposure, and
methods for biochemical assay. In her Editorial in the previous issue of
Fluoride, Chinoy proposed that the diet of fluorotic populations, medica-
tions, daily consumption of water, differential sensitivity of different tissues
to fluoride, and fluoride levels in blood should be also taken into considera-
tion.24 The importance of these factors is unquestionable. However, to un-
derstand and explain the various differing results concerning oxidative stress
in fluoride intoxication will require further investigation. At least the fol-
lowing five areas are worthy of attention:

1. Aging: Kasapoglu and Ozben investigated the correlation between oxida-
tive stress and aging by determinations of lipid peroxidation expressed as
thiobarbituric acid reactive substances (TBARS; MDA), and activities of
SOD, GSH-Px, and CAT in a sample of 100 healthy men and women rang-
ing in age from 20 to 70 years.25 From their results, these authors suggest
there is an age-related increase in lipid peroxidation expressed as MDA, and
that aging is not linked to a decline in antioxidant enzyme activity, except
for GSH-Px.

Similarly, Rikans and Hornbrook believe increased lipid peroxidation and
decreased antioxidant protection frequently occur but are not universal fea-
tures of aging.26 Instead, age-dependent changes in these parameters appear
to be species-, strain-, sex- and tissue-specific. Potential correlations be-
tween lipid peroxidation and declining antioxidant protection were obscured
by the contradictory nature of the findings.

Palomero et al studied changes in liver glutathione and antioxidant en-
zymes of 1-, 2-, 4-, and 24-months-old rats.27 The hepatic content of GSH
increased with aging, peaked at four months, and decreased in senescent
rats. By contrast, SOD, CAT, and GSH-Px activities were higher in the old-
est rats than in the youngest ones.

2. Antioxidants as pro-oxidants: Jacob and Burri claim that most antioxi-
dants can act as pro-oxidants under certain conditions, and clearly more re-
search is needed to determine the occurrence and importance of this effect in
vivo.28

3. Hypersensitivity to fluoride: Some individuals may experience hypersen-
sitivity to fluoride-containing agents. Lee described an increase in the serum
bilirubin concentration in patients with Gilbert’s disease, which was due
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solely to fluoride-containing tablets.29 An enzyme-inhibiting action by fluo-
ride was considered to be the most likely mechanism involved.

4. Diseases: Devi et al reported that plasma lipid peroxidation products in
untreated leukemia patients were in the normal range.30 Red cell Cu-Zn SOD
and GSH-Px activities were significantly increased and showed no correla-
tion with the hemoglobin content. Although superoxide generation was high,
lipid peroxide levels were normal in these patients. This might be due to the
increased activities of the antioxidant enzymes SOD and GSH-Px which
counteract lipid peroxidation. Increased free radical generation, especially
superoxide anion in leukemia patients and increased antioxidant defense en-
zymes, which is an adaptive protective response, are indicative of mild oxi-
dative stress. These results conflict with the opinion that increased oxidative
stress must be followed by enhanced lipid peroxidation and a decline in an-
tioxidative enzymes activities.

5. Fluoride as a competitive inhibitor: In their valuable study on fluoride
and the earthworm Eisenia fetida, Lawson and Yu paid attention to fluoride
as a competitive inhibitor of SOD.31 Their proposed mechanism for inhibi-
tion of SOD by fluoride involves its binding to the active site of Cu on SOD,
thus displacing water. In their view the binding of fluoride to the active site
of SOD is not readily, or spontaneously, reversible, and that the reaction rate
for fluoride binding is fairly constant, reaching an equilibrium within a very
short period of time. This could explain why the activity of SOD may be
decreased even without enhanced lipid peroxidation expressed by normal
level of MDA.14

According to Chlubek et al, a decrease in SOD activity can be attributed
to a direct action of fluoride on the enzyme rather than to increased genera-
tion of free radicals induced by fluoride intoxication.14 Moreover, it seems
logical that increased production of the superoxide radical, which serves as a
substrate for SOD, should be followed by increased rather than decreased
activity of the enzyme. This point of view is confirmed by Kale et al, who
measured pyrethroid-induced lipid peroxidation and the antioxidant system
in rat erythrocytes.32 Their results showed that lipid peroxidation increased
within three days after pyrethroid treatment. The increased oxidative stress
resulted in an increase in the activity of antioxidant enzymes such as SOD
and CAT, which together with increased GSH content in erythrocytes may
probably be an initial adaptive response to increased oxidative stress in in-
toxicated rats.

Gumuslu et al observed similar changes in the activity of antioxidative
enzymes in rats exposed to sulfur dioxide.33 Exposure to SO2 stimulated
lipid peroxide formation in the lung as indicated by an increase in the level
of thiobarbituric acid reactive substances (TBARS). Lung SOD, GSH-Px,
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and GST activities were also increased in response to SO2. The authors con-
clude that the increase in the activities of the antioxidant enzymes in lung
could be interpreted as a positive feedback mechanism in response to in-
creased lipid peroxidation.

Results of the above-mentioned studies show that increases in the level of
oxidative stress may be explained by numerous factors other than ROS that
contribute to this process. These factors can influence one another and must
also be considered in fluoride intoxication.

ADDENDUM TABLES
The following six tables are concerned with the effects of fluoride on

fluorotic humans and fluoride-intoxicated animals with respect to:

• Superoxide dismutase (SOD) activity (Tables 1 and 2).
• Glutathione peroxidase (GSH-Px) activity (Tables 3 and 4).
• Malondialdehye (MDA) formation and concentration (Tables 5 and 6).

Table 1. Influence of fluoride on superoxide dismutase (SOD)
activity in fluorotic humans (in order of publication)

Area: water fluoride level Length of
exposure

Tissue Effect % of control
activity

Method Reference

Suicheng, Guizhou Prov-
ince, China:  Level ?

?
(children)

Plasma None 100% ? 20

Kheru Nayak Thanda, Gul-
barga District of Karnataka,
India:  0.5 – 12.6 ppm

3-10 yrs.
(children)

RBC Inhibition 94.3%
p<0.001

34 17

Edavalli, Nalgonda District,
India:  > 5 ppm

> 15 yrs.
(adults)

RBC None 99.7% 35 15
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