SUMMARY: Administration of sodium fluoride (NaF, 5 mg/kg body weight) and/or arsenic trioxide (As₂O₃, 0.5 mg/kg body weight) for 30 days caused structural alterations (including the formation of giant cells) in mice testis, affected spermatogenesis, reduced protein levels, and lowered activities of 3β- and 17β-hydroxysteroid dehydrogenases (HSDs). In turn, the latter effect resulted in accumulation of cholesterol and a decline in testosterone levels, indicating a decrease in testicular steroidogenesis. Withdrawal of NaF + As₂O₃ for 30 days led to partial recovery, but supplementation with ascorbic acid, calcium, and vitamin E, individually or in combination, during the withdrawal period, caused significant recovery in testis.

Keywords: Arsenic and testis; Fluoride and testis; Spermatogenesis; Testicular steroidogenesis; Testis structure alterations; Toxicity reversal.

INTRODUCTION

The occasional widespread distribution of fluoride and arsenic in the environment through drinking water and food often results in adverse health effects. Excess fluoride in drinking water leads to fluorosis, and elevated arsenic leads to arsenism. Although research has been carried out on the effects of fluoride on the reproductive organs as well as fertility impairment in animal models, the results are controversial. Moreover, the effects of arsenic and/or fluoride ingestion on the reproductive organs are not fully understood. Hence, an investigation was made of the toxic effects on the testis of mice ingesting fluoride and/or arsenic by mice for 30 days, followed by monitoring recovery after a 30-day withdrawal period with and without antidotes.

MATERIALS AND METHODS

Adult Swiss strain male mice (Mus musculus) weighing between 20 and 30 g were procured from National Institute of Occupational Health (NIOH), Ahmedabad, under Registration Number 167/1999/CPCSEA, from the Ministry of Social Justice and Empowerment, Government of India and Committee for the Purpose of Control and Supervision of Experiments on Animals, Chennai, India. The mice were divided into thirteen groups and treated with sodium fluoride (NaF), arsenic trioxide (As₂O₃) and their combination as well as with vitamins C and E and calcium phosphate as shown in the treatment protocol table.
After the respective treatments the animals were sacrificed by cervical dislocation. The testes were excised, blotted free of blood, and utilized for histological studies by haematoxyline and eosin (HE) staining and some biochemical parameters.

The levels of protein10 and cholesterol,11 and the activities of 3\(\beta\)- and 17\(\beta\)-hydroxysteroid dehydrogenases (HSDs) (E.C. 1.1.1.51)12 in testis, together with serum testosterone levels13 of control and treated mice were determined using methods cited.

Statistical analysis: For all biochemical parameters, a minimum of 5–6 replicates were assayed, and the data were statistically analysed by Student’s t test and ANOVA.
RESULTS

Testis histology: The seminiferous tubules of normal mice showed the different germinal epithelial cells and the interstitial Leydig cells (Figures 1 and 2).

Figure 1. Transverse section of testis of control (Group I) mice showing seminiferous tubules and Leydig cells in the interstitium (arrow). HE staining (X 200).

Figure 2. Transverse section of testis of control (Group I) mice. HE staining (X 920).
As$_2$O$_3$ treatment (Group VII) resulted in apical degeneration and confluence of tubules, denudation of germinal epithelial cells, and absence of sperm in the lumen. In some tubules the lumen was completely obliterated. The Leydig cells were not clearly seen (Figures 3 and 4).

Figure 3. Transverse section of testis of As$_2$O$_3$ (Group VII) treated mouse showing apical degeneration and confluence of tubules, denudation of germinal epithelial cells and some tubules with obliterated lumen and others devoid of sperms. HE staining (X 188).

Figure 4. Transverse section of testis of As$_2$O$_3$ (Group VII) treated mouse. HE staining (X 830).
The combined treatment of NaF + As$_2$O$_3$ (Group VIII) showed many tubules with giant cells of different sizes lining the lumen (Figures 5 and 6).

Figure 5. Transverse section of testis of NaF + As$_2$O$_3$ (Group VIII) treated mouse showing denudation of germinal epithelial cells. Giant cells of different sizes lining the lumen were also seen. HE staining (X 155).
Figure 6. Magnified view of figure 5. HE staining (X 785).
Withdrawal of treatment was not conducive for recovery. Ascorbic acid, vitamin E, and calcium treatments alone and in combination, however, brought about almost complete recovery (Figures 7–10).

Figure 7. Transverse section of testis of Group X mouse showing spermatozoa in the lumen. HE staining (X 630).

Figure 8. Transverse section of testis of Group XI mouse showing complete recovery. HE staining (X 930).
Testicular protein and serum testosterone levels decreased significantly (p<0.001) after administration of NaF, As₂O₃, and NaF + As₂O₃ (Groups VI–VIII) for 30 days as compared to Groups I–V. A significant (p<0.001) recovery occurred after withdrawal of NaF + As₂O₃ treatment (Group IX) and by administration of therapeutic agents (Groups X–XIII) singly or in combination as compared to Group VIII treated animals (Table 1).

Cholesterol levels in testis of NaF (Group VI), As₂O₃ (Group VII) and NaF + As₂O₃ (Group VIII) treated animals revealed a significant enhancement (P<0.05, P<0.02, P<0.01) as compared to control Groups I–V. An insignificant recovery
was obtained upon withdrawal of treatment in Group IX as compared to Group VIII, whereas, in mice administered therapeutic agents, alone or in combination, (Groups X–XIII) resulted in very significant (P<0.001) recovery (Table 1).

Table 1. Protein, cholesterol (mg/100 mg fresh tissue wt), activities of 3β- and 17β-hydroxysteroid dehydrogenases (HSDs) (nanomoles of androstenedione formed/mg protein/minute) and testosterone (ng/mL) in testis of Groups I–XIII mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Protein (mg/100 mg fresh tissue wt)</th>
<th>Cholesterol (mg/100 mg fresh tissue wt)</th>
<th>3β-HSD (nmol/mg protein/minute)</th>
<th>17β-HSD (nmol/mg protein/minute)</th>
<th>Serum testosterone (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Control + distilled water</td>
<td>14.50 ± 0.48</td>
<td>0.47 ± 0.02</td>
<td>0.33 ± 0.02</td>
<td>0.21 ± 0.01</td>
<td>2.57 ± 0.08</td>
</tr>
<tr>
<td>II</td>
<td>Control + olive oil</td>
<td>14.69 ± 0.40</td>
<td>0.49 ± 0.01</td>
<td>0.34 ± 0.01</td>
<td>0.21 ± 0.02</td>
<td>2.38 ± 0.02</td>
</tr>
<tr>
<td>III</td>
<td>Control + ascorbic acid (AA)</td>
<td>14.60 ± 0.38</td>
<td>0.48 ± 0.01</td>
<td>0.34 ± 0.01</td>
<td>0.21 ± 0.02</td>
<td>2.45 ± 0.04</td>
</tr>
<tr>
<td>IV</td>
<td>Control + calcium phosphate (Ca)</td>
<td>14.40 ± 0.36</td>
<td>0.49 ± 0.02</td>
<td>0.35 ± 0.01</td>
<td>0.21 ± 0.01</td>
<td>2.50 ± 0.02</td>
</tr>
<tr>
<td>V</td>
<td>Control + vitamin E (Vit. E)</td>
<td>14.37 ± 0.36</td>
<td>0.49 ± 0.01</td>
<td>0.35 ± 0.01</td>
<td>0.21 ± 0.01</td>
<td>2.49 ± 0.06</td>
</tr>
<tr>
<td>VI</td>
<td>NaF</td>
<td>10.23 ± 0.43§</td>
<td>0.53 ± 0.02</td>
<td>0.27 ± 0.01‡</td>
<td>0.18 ± 0.01*</td>
<td>2.20 ± 0.05§</td>
</tr>
<tr>
<td>VII</td>
<td>As₂O₃</td>
<td>8.77 ± 0.23§</td>
<td>0.54 ± 0.01†</td>
<td>0.24 ± 0.02§</td>
<td>0.16 ± 0.01§</td>
<td>2.07 ± 0.04§</td>
</tr>
<tr>
<td>VIII</td>
<td>NaF + As₂O₃</td>
<td>7.77 ± 0.16§</td>
<td>0.56 ± 0.01‡</td>
<td>0.21 ± 0.01§</td>
<td>0.14 ± 0.003§</td>
<td>1.8 ± 0.10§</td>
</tr>
<tr>
<td>IX</td>
<td>Withdrawal of Group VIII treatment</td>
<td>11.01 ± 0.25§</td>
<td>0.52 ± 0.02</td>
<td>0.23 ± 0.01</td>
<td>0.15 ± 0.01</td>
<td>2.12 ± 0.04§</td>
</tr>
<tr>
<td>X</td>
<td>Withdrawal of Group VIII treatment + AA</td>
<td>12.64 ± 0.19§</td>
<td>0.48 ± 0.004§</td>
<td>0.28 ± 0.01§</td>
<td>0.19 ± 0.004§</td>
<td>2.40 ± 0.04§</td>
</tr>
<tr>
<td>XI</td>
<td>Withdrawal of Group VIII treatment + Ca</td>
<td>11.68 ± 0.20§</td>
<td>0.49 ± 0.004§</td>
<td>0.26 ± 0.01§</td>
<td>0.18 ± 0.004§</td>
<td>2.30 ± 0.04§</td>
</tr>
<tr>
<td>XII</td>
<td>Withdrawal of Group VIII treatment + Vit. E</td>
<td>12.08 ± 0.14§</td>
<td>0.49 ± 0.005§</td>
<td>0.26 ± 0.01§</td>
<td>0.18 ± 0.003§</td>
<td>2.33 ± 0.02§</td>
</tr>
<tr>
<td>XIII</td>
<td>Withdrawal of Group VIII treatment + AA, Ca & Vit. E</td>
<td>13.56 ± 0.20§</td>
<td>0.48 ± 0.005§</td>
<td>0.30 ± 0.01§</td>
<td>0.20 ± 0.003§</td>
<td>2.52 ± 0.04§</td>
</tr>
</tbody>
</table>

aData are expressed as mean ± SE. *p<0.05; †p<0.02; ‡p<0.01; §p<0.001; no sign = not significant.

Comparisons between: Group I with Groups VI or VII or VIII individually; Group VIII with Groups IX or X or XI or XII or XIII individually.
The activities of 3β- and 17β-HSDs in testis of Groups VI–VIII were inhibited significantly (Group VI P<0.01 for 3β-HSD and P<0.05 for 17β-HSD; Groups VII and VIII P<0.001) as compared to control Groups (I–V). An insignificant recovery was observed upon withdrawal of treatment (Group IX) as compared to Group VIII. However, both enzyme activities were recovered significantly (P<0.001) on administration of therapeutic agents during withdrawal period (Groups X–XIII) as compared to Group VIII (Table1).

DISCUSSION

At the elevated levels used here, fluoride and/or arsenic trioxide treatment of adult male mice for 30 days resulted in severe alterations in the histology of testis which disturbed the process of spermatogenesis. Numerous tubules contained hypertropic giant cells of different sizes in the lumen which may be generated either due to failure of chromosome replication or cell division causing cell death. To the best of our knowledge, this is the first report of such giant cell findings. It is known that apoptosis is a physiological process of cell death leading to the controlled elimination of single unwanted cells from the midst of a viable tissue by formation of apoptotic bodies as observed in testis of rats treated with phosphamidon.14 In the present study, too, apoptotic cells/bodies were observed.
Further studies using specific tests are underway to confirm the observation. Earlier studies on mice, rats, and rabbits treated with different doses of fluoride for varied durations15-18 have also reported altered histology of testis with structural defects in spermatids and sperms. Human spermatozoa showed abnormalities in head, midpiece, and tail in subjects drinking fluoride contaminated water.19 The androgen-dependent enzyme activities of ram semen were significantly decreased \textit{in vitro} by NaF.20

With respect to arsenic, degenerative changes in the tubules and varying degrees of necrosis and pyknosis were observed in testis of arsenic treated freshwater fish, \textit{Colisa fasciatus}.21 The present findings corroborate earlier work in this regard22,23 and also show that fluoride and/or arsenic ingestion resulted in arrest of spermatogenesis, which is further confirmed by low sperm counts reported in the cauda epididymis.24 One of the factors responsible for the arrest of spermatogenesis in the current study might be the lack of available proteins necessary for cell division, growth, and differentiation of germ cells. Studies carried out by Bano \textit{et al}25 reveal a decrease in the soluble protein in testis on administration of NaF at a dose of 10 mg/kg body weight to mice for 30, 60, and 90 days. Disruption of protein metabolism occurs in various reproductive organs of rodents treated with different doses of NaF for varied durations.3-5,22,23,26 The testicular and epididymal protein profile of rats show reduction of some proteins and loss of others, but also induction of some new proteins which were not present in control animals after fluoride treatment.27 This might be a response to the stress imposed by NaF.

As(III) and As(V) also inhibit protein synthesis.1 Arsenic reacts with the sulphhydryl groups in certain tissue proteins and thus interferes with a number of enzyme systems essential to cellular metabolism.28 Protein concentration decreased significantly in different reproductive tissues of arsenic-treated mice.3 The results of the present study corroborate those findings. Lack of adequate protein turnover would have an adverse effect on testicular enzymes, receptors, and testicular secretions.

The reduction in activities of 3β- and 17β-hydroxysteroid dehydrogenases (3β-HSD and 17β-HSD) after fluoride and/or arsenic treatment correlates with accumulation of cholesterol in the testis and a decrease in the levels of circulating testosterone. Some earlier studies have also reported similar changes in rabbits, rats, and mice,4,5,23,29-31 and in human populations in endemic areas of North Gujarat3 and in males suffering from skeletal fluorosis.32 Similarly, a significant decrease in testicular 3β-HSD, 17β-HSD activities, and testosterone levels in arsenic-treated rats33 as well as decreased spermatogenesis and degenerative changes in testicular histology in arsenic-treated mice34,35 are in agreement with the present study. These results suggest that fluoride and arsenic interfere with cholesterol metabolism, testicular androgenesis, and spermatogenesis.

The recovery in all the parameters by administration of vitamins C and E and calcium during the NaF + As\textsubscript{2}O\textsubscript{3} withdrawal period, could be attributed to the
antioxidant properties of the vitamins and their synergistic action with calcium.3,4,26,27,36

REFERENCES

Chinoy, Tewari, Jhala

