OSTEO-DENTAL FLUOROSIS IN RELATION TO NUTRITIONAL STATUS, LIVING HABITS, AND OCCUPATION IN RURAL TRIBAL AREAS OF RAJASTHAN, INDIA

SL Choubisa,^a Leela Choubisa,^b Darshana Choubisa^c

Udaipur, India

SUMMARY: A cross-sectional survey of 18,621 adults of both sexes living in rural tribal areas of the Dungarpur and Udaipur districts of Rajasthan, India was conducted to correlate the prevalence of osteo-dental fluorosis with nutritional status, living habits, and occupation. The mean fluoride (F) concentration in drinking water sources ranged from 1.0 to 6.1 ppm. Among subjects with poor nutrition, the prevalence of dental fluorosis rose to 61.6% and skeletal fluorosis to 23.9%. A high incidence of fluorosis was also observed in subjects using substances such as alcohol, betel nuts, citrus fruits, edible ghee or fat, tea, and tobacco. The highest incidence of dental (90.1%) and skeletal (60.8%) fluorosis was observed in alcohol or beverage users and the lowest (30.8% and 8.9%) in the citrus fruits users, respectively. Subjects with different occupations exhibited a variable incidence of dental and skeletal fluorosis. Labourers showed the highest incidence of dental and skeletal fluorosis (63.1% and 26.2%), followed by farmers (61.2% and 21.8%), housewives (57.1% and 13.2%), businessmen (54.2% and 14.4%), students (54.2% and 9.5%), and servicemen (51.5% and 15.9%), respectively. These data pertaining to the relationship of osteo-dental fluorosis with nutritional status, living habits, and occupation were statistically analysed and found to exhibit highly positive correlations. Possible causes for differences in the incidence of fluorosis in relation to nutritional status, habits, and occupation are discussed.

Keywords: Fluoride water; Fluorosis and occupation; Fluorosis in Rajasthan, India; Living habits; Nutritional status; Osteo-dental fluorosis.

INTRODUCTION

Dental and skeletal fluorosis have been widely reported in areas where the fluoride (F) content in drinking water is high.¹ In India this problem is endemic in several states.²⁻³ In Rajasthan, people in almost all the districts, especially in rural areas, are adversely affected with fluorosis.⁴⁻⁷ In these areas domestic animals are also affected with fluorosis.⁸⁻¹¹ Although the prevalence of fluorosis in relation to the concentration of F in drinking water has been widely reported, studies on the occurrence of fluorosis in relation to other variables such as age, sex, and certain dietary components are also of interest.¹²⁻¹⁷ Because the incidence of fluorosis in relation to nutritional status, use of certain foodstuffs, and occupation of subjects has had only limited study, the present survey-type investigation was undertaken to determine the relationship of dental and skeletal fluorosis to nutritional status, living habits, and occupation in two F endemic districts of Rajasthan.

MATERIALS AND METHODS

Our study was conducted in 73 villages (Table 1) of the Dungarpur and Udaipur districts in Rajasthan, India, which are predominantly inhabited by tribal

^aFor Correspondence: Dr SL Choubisa, Department of Zoology, Government Meera Girls College, Udaipur-313001, India; E-mail: choubisasl@yahoo.com; ^bShri Harideo Joshi Government Hospital, Dungarpur-314001, India; ^cSurendra Dental College and Research Institute, Sri Ganganagar-335001, India.

populations using dug wells and hand pumps and a few seasonal ponds as the main sources of their drinking water.

District	Panchayat Samiti	Number of villages	Names of villages (Mean F level in the drinking water source)					
Dungarpur	Aspur		Jogiwara (1.1), Munged (1.5), Jhariyana (1.8), Bodigam (2.4), Punjpur (2.9), Mal (3.3) Dhundha (3.5), Kabja (3.7), Pindawal (4.0) and Ghunta (4.4)					
	Bichhiwara	4	Rampur (1.1), Buvela (1.2), Vagdari (1.8) and Vadepal (3.2)					
	Dungarpur	10	Navatapra (1.2), Lolakpur (1.5), Faloz (2.7), Dovada (2.8), Vikaspur (3.0), Ragunathpura (3.2), Mandavpal (3.8), Naraniya (5.2), Genhuwara (5.8) and Samota (6.1).					
	Sagwara	18	Thakarda (1.0), Akhepur (1.3), Gamda (1.4), Bhimdadi (1.7), Bhasaur (2.0), Jethana (2.2) Bhachadiya (2.3), Mavita (2.5), Virsingpur (2.6), Padra (2.6), Kariyana (2.7), Padampura (2.9), Samaliya (3.1), Kahela (3.4), Padava (3.5), Saroda (4.2), Bhavanpura (4.8), and Karada (5.0)					
	Simalwara	2	Sithal (1.0) and Bhemai (1.5).					
Udaipur	Kherwara	4	Banjaria (1.4), Kalyanpur (1.6), Hodi (2.4) and Bhalunguda (4.4).					
	Salumbar	13	Kheda (1.0), Manpur (1.2), Matasula (1.5), Randela (1.9), Seriya (2.3), Noli (2.9), Alpu (3.1), Kalyakala (3.2), Salumber (1.9), Jhalara (4.0), Tharoda (4.0), Mandli (4.2), and Kalutada (5.4).					
	Sarada	12	Pipla (1.1), Kunda (1.2), Bori (1.4), Kejad (1.5), Chavand (1.6), Karadia (1.8), Sagatara (2.3), Surkand Kheda (2.8), Pandar (3.1), Dhakarda (3.5), Dekali (4.7), and Khajuria (5.8).					
	Total	73						

Table 1. Villages surveyed in Dungarpur and Udaipur districts of Rajasthan, India

The mean F concentration in these drinking water sources, estimated spectrophotometrically by the alizarin method,¹⁸ varied from 1.0 to 6.1 ppm compared to the recommended maximum permissible limit of 1–1.5 ppm.¹⁹⁻²⁰ For the collection of data pertaining to the incidence and severity of fluorosis, a cross-sectional survey was made covering 18,621 individuals (both sexes) residing in these villages. A questionnaire was designed to collect information regarding names, sex, age, occupation, nutritional status (good, fair, and poor), dietary habits, and clinical symptoms of dental and skeletal fluorosis.^{1,3} For skeletal fluorosis, adults over the age of 21 who had lived in one of the villages for at least 15 years were included in the study.

RESULTS

Fluorosis in relation to nutritional status and habits: Villagers with "poor" nutritional status showed the highest incidence of dental and skeletal fluorosis, whereas those with good and fair nutritional status had the lowest (Table 2). The correlations were analysed statistically and found to be highly positive (r = +1). As seen in Table 3, a high incidence of dental and skeletal fluorosis was observed for habitual users of tea, tobacco, betel nuts, and/or alcoholic drinks, whereas a relatively a very low incidence of fluorosis was observed among users of citrus fruits and ghee. The statistical correlation between the incidence of dental and skeletal fluorosis in users (r = +1) and non-users (r = +0.7857) were also found to be highly positive.

In relation to occupation: Although subjects of the studied areas have a variety of occupations, but on the basis of the types of work, they have been divided into six groups, viz., businessmen, farmers, housewives, labourers, servicemen, and students. From the data in Tables 4 and 5, it is clearly evident that labourers of both districts showed the highest incidence of dental fluorosis and servicemen the

lowest. However, the percentage of subjects with severe dental fluorosis (Table 5) was in the order: labourers > farmers > businessmen > servicemen > housewives > students.

Nutritional status	De	ental fluorosis (D).F.)	Skeletal fluorosis (S.F.)			
	Dist	rict		Dist			
	Dungarpur	Udaipur	Total	Dungarpur	Udaipur	Total	
Good	571/986	204/678	775/1664	52/498	14/260	66/758	
	(57.9)	(30.1)	(46.6)	(10.4)	(5.4)	(8.7)	
Fair	940/1406	405/1118	1345/2524	134/693	58/533	192/1226	
	(66.9)	(36.2)	(53.3)	(19.3)	(10.9)	(15.7)	
Poor	6579/8813	2305/5620	8884/14433	1278/4105	352/2716	1630/6821	
	(74.7)	(41.0)	(61.6)	(31.1)	(13.0)	(23.9)	
Total	8090/11205	2914/7416	11004/18621	1464/5296	424/3509	1888/8805	
	(72.2)	(39.3)	(59.1)	(27.6)	(12.1)	(21.4)	

Table 2. In cid ence	(%) of fluorosis in	n relation to nutritional status
----------------------	---------------------	----------------------------------

Figures in parentheses indicate percentage. Correlation coefficient between prevalence of dental and skeletal fluorosis, r = +1 (highly positive).

Dietary substance	Dental flu	orosis (D.F.)	Skeletal fluorosis (S.F.)		
	Users	Non-users	Users	Non-users	
Alcoholic drinks	3114/3456	7890/15165	1292/2125	596/6680	
	(90.1)	(52.0)	(60.8)	(8.9)	
Betelnuts	5486/7319	5518/11302	1119/3679	769/5126	
	(75.0)	(48.8)	(30.4)	(15.0)	
Citrus fruits	617/2003	10387/16618	84/947	1804/7858	
	(30.8)	(62.5)	(8.8)	(23.0)	
Ghee (Fat)	2742/5714	8262/12907	266/2701	1622/6104	
	(48.0)	(64.0)	(8.9)	(26.6)	
Теа	9597/13928	1407/4693	1716/6885	172/1920	
	(68.9)	(30.0)	(24.9)	(9.0)	
Tobacco	3491/4364	7513/14257	1170/3618	718/5187	
	(80.0)	(52.7)	(32.3)	(13.8)	

Table 3. Incidence (%) of fluorosis in relation to certain dietary substances

Figures in parentheses indicate percentage. Correlation coefficient between prevalence of dental and skeletal fluorosis in users r = +1 (highly positive) and in non-users r = + 0.7875 (highly positive).

Similarly, a high incidence of skeletal fluorosis (Table 4) was also observed in labourers followed by farmers, servicemen, businessmen, housewives, and students. The severity of skeletal fluorosis was proportional to the incidence, i.e., higher the incidence, higher the severity (Table 5). Grade III skeletal fluorosis was highest among labourers and farmers, whereas grade I was more common among businessmen, housewives, and students. These data when analysed statistically showed a weak positive correlation (r = 0.4857 to 0.6). However, the correlation

between the incidence of dental (r = +0.7) and skeletal fluorosis (r = +1.0) was found to be highly positive (Table 5).

Occupation Group	De	ntal fluorosis (D	0.F.)	Skeletal fluorosis (S.F.)			
Group	Dist	rict	Total	Dis	Total		
	Dungarpur	Udaipur		Dungarpur	Udaipur		
Businessmen	180/276	58/163	238/439	50/276	13/163	63/439	
	(65.2)	(35.6)	(54.2)	(18.1)	(8.0)	(14.4)	
Farmers	1761/2362 (74.6)	599/1496 (40.0)	2360/3858 (61.2)	462/1678 (27.5)	124/1006 (12.3)	586/2684 (21.8)	
House wives	698/996 (70.1)	242/649 (37.3)	940/1645 (57.1)	112/671 (16.7)	34/438 (7.8)	146/1109 (13.2)	
Labourers	3076/3971 (77.5)	12 <i>5</i> 2/2885 (43.4)	4328/6856 (63.1)	743/2125 (35.0)	221/1548 (14.2)	964/3673 (26.2)	
Servicemen	258/406	91/272	349/678	81/406	27/272	108/678	
	(63.5)	(33.5)	(51.5)	(20.0)	(9.9)	(15.9)	
Students	2117/3194	672/1951	2789/5145	16/140	5/82	21/222	
	(66.3)	(34.4)	(54.2)	(11.4)	(6.1)	(9.5)	
Total	8090/11205 (72.2)	2914/7416 (39.3)	11004/18621 (59.1)	1464/5296 (27.6)	424/3509 (12.1)	1888/880 (21.4)	

Table 4. Incidence (%) of fluorosis in relation to various occupations

Figures in parentheses indicate percentage. Correlation coefficient between incidence of dental and skeletal fluorosis in relation to occupations in Dungarpur district r = + 0.4857 (less positive); Udaipur district r = + 0.6 (Positive); total r = + 0.5571 (Positive).

Occupation Groups	Dental fluorosis (D.F.)					Skeletal fluorosis (S.F.)				
	D.F. ^{+ve} Subjects	Questionable	Very- mild	Mild	Moderate	Severe	S.F. ^{+ve} Subjects	Grade		
								1	Ш	111
Labourers	4328/6856	164	468	972	1126	1568	964/3673	152	253	559
	(63.1)	(3.8)	(10.8)	(22.5)	(26.0)	(36.2)	(26.2)	(15.8)	(26.2)	(58.0)
Farmers	2360/3858	176	341	376	830	634	586/2684	152	138	296
	(61.2)	(7.5)	(14.4)	(16.0)	(35.2)	(26.9)	(21.8)	(25.9)	(23.5)	(50.5)
Servicemen	349 <i>/</i> 678	50	58	89	80	72	108/678	33	35	40
	(51.5)	(14.3)	(16.6)	(25.5)	(22.9)	(20.6)	(15.9)	(30.6)	(32.4)	(37.0)
Businessmen	238/439	30	48	74	36	50	63/439	24	17	22
	(54.2)	(12.6)	(20.2)	(31.1)	(15.1)	(21.0)	(14.4)	(38.0)	(27.0)	(34.9)
Housewives	940/1645	167	174	350	113	136	146/1109	59	48	39
	(57.1)	(17.8)	(18.5)	(37.2)	(12.0)	(14.5)	(13.2)	(40.4)	(32.9)	(26.7)
Students	2789/5145 (54.2)	862 (30.9)	685 (24.6)	496 (17.8)	371 (13.3)	375 (13.4)	21/222 (9.5)	14 (66.7)	7 (33.3)	-
Total	11004/18621	1449	1774	2360	2556	2865	1888/8805	434	498	956
	(59.1)	(13.2)	(16.1)	(21.4)	(23.2)	(26.0)	(21.4)	(23.0)	(26.4)	(50.6)

Table 5. Severity (%) of fluorosis in relation to occupations

Figures in parentheses indicate percentage. Correlation coefficient between incidence and severity of dental fluorosis r = 0.7 (highly positive); skeletal fluorosis r = +1.0 (highly positive).

DISCUSSION

In the rural areas of the present study, dominated by tribal populations with smaller numbers of scheduled castes (SC) and general castes (GC) populations. Tribals are mostly illiterate and socio-economically backward and poor in the society as well as are genetically different from non-tribal SC and GC subjects. The tribals are predominantly farmers and labourers and generally drink more water, thereby maximizing their F intake.⁸ In addition, the tribals are genetically different from the SC and GC caste groups, and therefore may be relatively more susceptible to F toxicosis.²¹ Secondly they also ingest locally made wines and tea that are additional sources of fluoride toxicity.²²⁻²⁵ Subjects belonging to other occupation groups also drink wine, beverages, and tea, but the nutrient value of their diets and socio-economic status vary greatly. Hence, variation in the incidence and severity of F toxicosis (fluorosis) is likely. In farmers and labourers, the nutritional value of their food is generally very poor and therefore deficiency of vitamins and other dietary components is possible which can decrease or increase F absorption/intoxication.¹ It is well known that milk, curd, and some vegetables are rich in calcium, whereas citrus fruits and leafy vegetables contain vitamin C. Both these nutrients and fat (ghee and domestic oils) reduce F absorption.¹ Subjects having these food stuffs in their diet (good nutritional status), the incidence and severity of fluorosis are less than in subjects having only fair and poor nutritional status (Tables 2 and 3). This indicates that poor nutrition exacerbates F toxicity.

The incidence and severity of fluorosis varied greatly among different occupation groups. Such differences have been observed in different castes having their own kinds of professions; Kumhars are severely affected by dental fluorosis followed by Muslims, Brahmins, Jat, Harijans, and Barbers.²⁶ These variations are probably due mainly to differences in nutrition. But other factors, depending on the type of occupation, can have a significant role in the aggravation of fluorosis. In labourers and farmers the severity of fluorosis is much greater than in servicemen and businessmen (Table 5) and is less in housewives and students. Other investigators^{8,26} have observed and reported a maximum incidence and severity of skeletal fluorosis in farmers and hardworking subjects. Those studies indicate that, in addition to nutrition and physical work, intrinsic individual genetic differences contribute to the degree of F intoxication. The present study significantly expands this area of our knowledge of F toxicosis.

ACKNOWLEDGEMENTS

The authors are grateful to the Ministry of Environment and Forests, New Delhi, for financial assistance. We thank Assistant Professor Dr Hemant Jain, Department of Statistics and Computer Application, Rajasthan College of Agriculture, Udaipur, for statistical analysis of the data.

REFERENCES

¹ World Health Organization. Fluorides and human health. Monograph Series No. 59. Geneva: World Health Organization; 1970.

215 Research report Fluoride 42(3)210–215 July-September 2009

- 2 Teotia SPS, Teotia M. Endemic fluorosis in India: a challenging national health problem. J Assoc Physicians India 1984;32:347-52.
- 3 Susheela AK. Prevention and control of fluorosis in India. Vol. I, Health Aspects. New Delhi: Rajiv Gandhi National Drinking Water Mission, Ministry of Rural Development;1993.
- 4 Choubisa SL. Fluoride distribution and fluorosis in some villages of Banswara district of Rajasthan. Indian J Environ HIth 1997;39:281-8.
- 5 Choubisa SL, Choubisa DK, Joshi SC, Choubisa L. Fluorosis in some tribal villages of Dungarpur district of Rajasthan, India. Fluoride 1997;30:223-8.
- 6 Choubisa SL. Endemic fluorosis in southern Rajasthan. Fluoride 2001;34:61-70.
- 7 Choubisa SL, Choubisa L, Choubisa DK. Endemic fluorosis in Rajasthan. Indian J Environ Hlth 2001;43:177-89.
- 8 Choubisa SL. Chronic fluoride intoxication (fluorosis) in tribes and their domestic animals. Intern J Environ Stud 1999;56:703-16.
- 9 Choubisa SL. Some observations on endemic fluorosis in domestic animals in southern Rajasthan. Vet Res Comm 1999;23:457-65.
- 10 Choubisa SL. Fluoridated ground water and its toxic effects on domesticated animals residing in rural tribal areas of Rajasthan (India). Intern J Environ Stud 2007;64:151-9.
- 11 Choubisa SL. Dental fluorosis in domestic animals. Cur Sci 2008;95:1674-5.
- 12 Desai VK, Saxena DK, Bhavsar BS, Kantharia SL. Epidemiological study of dental fluorosis in tribals residing near fluospar mines. Fluoride 1988;21:137-41.
- 13 Bhavsar BS, Desai VK, Mehta NR, Vashi RT, Krishnamachari KAVR. Neighbourhood fluorosis in Western India Part-I: environmental study. Fluoride 1985;18:80-6.
- 14 Bhavsar BS, Desai VK, Mehta NR, Vashi RT, Krishnamachari, KAVR. Neighbourhood fluorosis in Western India Part-II: population study. Fluoride 1985;18:86-92.
- 15 Jolly SS, Singh BM, Mathur BC, Malhotra KC. Epidemiological, clinical and biochemical study of endemic dental and skeletal fluorosis in Punjab. British Med J 1968;4:427-9.
- 16 Jolly SS, Singh ID, Prasad S, Sharma R, Singh BM, Mathur OC. An epidemiological study of endemic fluorosis in Punjab. Indian J Med Res 1969, 57:1333-45.
- 17 Choubisa SL, Sompura K. Dental fluorosis in tribal villages of Dungarpur district (Rajasthan). Poll Res 1996;15:45-7.
- 18 Saxena MM. Environmental analysis: water, soil and air. India: Agro Botanical Publishers;1987.
- 19 World Health Organization. International standards of drinking water. Geneva; World Health Organization; 1971.
- 20 Indian Council of Medical Research. Manual of standards of quality of drinking water supplies. New Delhi: Indian Council of Medical Research; 1975.
- 21 Choubisa SL, Choubisa L, Sompura K, Choubisa D. Fluorosis in subjects belonging to different ethnic groups of Rajasthan (India). J Commun Dis 2007;39:171-7.
- 22 Bilbeissi MW, Fraysee C, Mitre D, Kerebel M, Kerebel B. Dental fluorosis in relation to tea drinking in Jordan. Fluoride 1988;21:121-6.
- Opiniya GN, Bwibo N, Valderhaug J, Birkeland JM, Lokken P. Intake of fluoride through food and beverages by children in high fluoride (9 ppm) area in Kenya. Discov Innov 1991;3:71-6.
- 24 Perera PAJ, Warnakulasuriya S. Metabolism of tea fluoride. Int J Toxic Occup Environ HIth 1993;2:86.
- 25 Singh V, Gupta MK, Rajwanshi P, Srivastava S, Das S. Studies on ingestion of fluoride through tobacco, panmasala and tooth paste. Indian J Environ HIth 1993;35:215-20.
- 26 Bagga OP, Mehta SP, Berry K, Sarada L, Prakash V. Dental caries and fluoride toxicity. Fluoride 1979;12:38-47.